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Abstract

Background: The detection of Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutations in colorectal
cancer (CRC) is key to the optimal design of individualized therapeutic strategies. The noninvasive prediction of the
KRAS status in CRC is challenging. Deep learning (DL) in medical imaging has shown its high performance in
diagnosis, classification, and prediction in recent years. In this paper, we investigated predictive performance by using
a DL method with a residual neural network (ResNet) to estimate the KRAS mutation status in CRC patients based on
pre-treatment contrast-enhanced CT imaging.
Methods: We have collected a dataset consisting of 157 patients with pathology-confirmed CRC who were divided
into a training cohort (n = 117) and a testing cohort (n = 40). We developed an ResNet model that used portal venous
phase CT images to estimate KRAS mutations in the axial, coronal, and sagittal directions of the training cohort and
evaluated the model in the testing cohort. Several groups of expended region of interest (ROI) patches were
generated for the ResNet model, to explore whether tissues around the tumor can contribute to cancer assessment.
We also explored a radiomics model with the random forest classifier (RFC) to predict KRAS mutations and compared
it with the DL model.
Results: The ResNet model in the axial direction achieved the higher area under the curve (AUC) value (0.90) in the
testing cohort and peaked at 0.93 with an input of ’ROI and 20-pixel’ surrounding area. AUC of radiomics model in
testing cohorts were 0.818. In comparison, the ResNet model showed better predictive ability.
Conclusions: Our experiments reveal that the computerized assessment of the pre-treatment CT images of CRC
patients using a DL model has the potential to precisely predict KRAS mutations. This new model has the potential to
assist in noninvasive KRAS mutation estimation.
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Background
CRC is the third most commonly diagnosed malignancy
and the fourth leading cause of cancer-related deaths in
the world, and its burden is expected to increase by 60%
to more than 2.2 million new cases and 1.1 million cancer
deaths by 2030 [1]. The distinct heterogeneity of prognosis
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and treatment response has been observed in clinical
practice among various CRC patients, even in those who
share similar pathological stages and treatment modali-
ties. KRAS is a small G protein that plays a role in the
epidermal growth factor receptor (EGFR) pathway. KRAS
mutations are acquired early during colorectal tumorige-
nesis. In approximately 40% of all metastatic colorectal
cancer tumors, one of several heterozygous KRAS codon
12 or 13 mutations is detected [2]. Targeted treatments
with anti-EGFR monoclonal antibodies (cetuximab and
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panitumumab) are recommended by the National Com-
prehensive Cancer Network (NCCN) for metastatic CRC
patients whose tumors do not harbor KRAS mutations
[3, 4]. Therefore, the detection of KRAS gene mutations
in CRC is key to the optimal design of individualized
therapeutic strategies.
Invasive colonoscopy or surgery for the biopsy is the

limitation of KRAS mutational testing. The samples from
these invasive procedures may be limited by intratumoral
heterogeneity and may not sufficiently represent the exact
macroscopic status of the entire tumor. Moreover, the
NCCN [3] recommends that fresh biopsies should not be
obtained solely for the purpose of KRAS genotyping. His-
tological biopsies for KRAS testing are usually performed
before the initial treatment and cannot be repeated in the
subsequent treatment. Thus, it is very useful to explore
a noninvasive method to assist in the diagnosis of KRAS
mutations. The noninvasive prediction of the KRAS sta-
tus in CRC is challenging. Medical imaging technology
provides some exploratory methods for the detection
of the KRAS status. Several previous studies have used
positron emission tomography (PET)/computed tomog-
raphy (CT) with 18-F fluorodeoxyglucose PET/CT to
assess KRAS mutation information in CRC [5–7]. An
alternative CT-based radiomics approach for noninva-
sive KRAS mutation estimation in CRC has also been
applied [8].
Artficial intelligence (AI) has become a hot topic in

medical care support. Broadly speaking, machine learning
can be divided into two major classes: radiomic analysis,
which relies on multi-step pipelines, and the concept of
the DL method, which simplifies this pipeline by learn-
ing predictive features on its own. Recent studies have
shown the potential for DL in medical imaging due to its
high performance in diagnosis, classification, and predic-
tion [9–11]. Previous research has also shown the great
potential of DL in the prediction of key molecular mark-
ers in gliomas [12, 13].A convolutional neural network
(CNN) is a type of neural network developed specifi-
cally to learn hierarchical representations of imaging data.
A ResNet is an effective exploration of a deep CNN,
allowing the effective training of substantially deeper
networks than those used previously while maintaining
fast convergence times [14]. A ResNet has been used
increasingly due to its utility and simplicity in clinical
applications [15, 16].
To the best of our knowledge, there is no research

on whether a CT-based DL model can predict
the KRAS mutation status in CRC. Therefore,
we developed and evaluated a ResNet model on
contrast-enhanced CT before treatment to nonin-
vasively predict the KRAS status in CRC. We also
explored a radiomics model to compare with the DL
model.

Methods
Data collection
This research was approved by the First Hospital of Jilin
University medical ethics committee. All the patients
involved in the study signed an informed consent. A
total of 157 patients who had pathologically confirmed
CRC and underwent KRAS mutation tests and contrast-
enhanced CT pretreatment were identified retrospec-
tively between December 2016 and January 2018. Inclu-
sion criteria: (a) Archive data for patients with pathology-
confirmed colorectal cancer from December 2016 to Jan-
uary 2018; (b) Patients before treatment who underwent a
KRASmutation test; (c) Pre-treatment contrast-enhanced
CT available; and (d) Contrast-enhanced CTwith a recon-
struction slice thickness of 1.5 mm. Exclusion criteria: (a)
CRC patients who underwent radiotherapy, chemother-
apy or chemoradiotherapy before obtaining the patho-
logical tissue sample; (b) Patients without enhanced CT
before specimen collection. These patients were classi-
fied according to CT acquisition time and then assigned
to either training cohort or testing cohort on a 3:1 ratio.
There were 75 men and 42 women (mean age, 60 years;
age range, 28−88 years) assigned to the training cohort
and 31 men and 9 women (mean age, 59 years; age
range, 32−73 years) assigned to the testing cohort. KRAS
mutations (exons 2, 3, and 4) were analysed by a next-
generation sequencing (NGS) method.

CT technique
All patients underwent contrast-enhanced CT examina-
tions using one of two 64-detector row spiral CT scanners
(Philips, Brilliance iCT). CT scan was performed after 65s
delay following intravenous injection of 100ml Iopromide
(Uitravist-300; Bayer Schering Pharma, Berlin Germany)
at a rate of 3ml/s for enhancement. The scanning parame-
ters were as follows: 120 kV; 150 mAs; rotation time, 0.5 s;
and matrix size, 512 ×512. The section thickness was 1.5
mm, and the interval was 3 mm.

Data normalization
The portal venous phase images obtained from contrast-
enhanced CT in the axial, coronal, and sagittal direc-
tions were first preprocessed by performing intensity nor-
malization to reduce the noise and inconsistencies due
to low-frequency non-uniformity or the inhomogeneity
of intensities[17].The Z-score[18]method was applied to
normalize the training and testing cohorts:

I ′ = I − Ī
σI

where I indicates a slice from any cohort, Ī indicates the
average greyscale value of the two cohorts and σ1 indicates
the greyscale standard deviation of the two cohorts.
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ROI patch generation
Following normalization, the ROIs were manually delin-
eated along the contour of tumor on the largest tumor
cross section in axial direction, coronal direction and
sagittal direction. Air area inside the tumor area was
excluded from the contour. Two professional radiolo-
gists with 12 (reader 1, W.X.) and 7 (reader 2, X.X.Z.)
years of experience delineated the ROI in a blinded fash-
ion. The two-dimensional segmentation was completed
using ITK-SNAP software (version 3.4; www.itk-snap.org).
An independent samples t-test was used to evaluate the
differences between the features generated by reader 1
and reader 2 (interobserver), and the differences between
the twice-generated features by reader 1 (intraobserver).
Inter- and intraclass correlation coefficients (ICCs) were
used to assess the agreement of feature extraction. It was
considered acceptable that the ICC is greater than 0.75.
To extract original patches, a minimum bounding rect-

angle was first drawn around each manual ROI. That
ensured the entire tumor area, as well as the minimum
peritumoral tissue, was captured. The region of the mini-
mum bounding rectangle was cropped in this slice. Since
the size of all the ROI patches was different, we counted
the median height and median width from all the ROI
patches for three groups. Then, nonlinear interpolation
was used to resize the ROI patches for three groups. The
ROI patch sizes after resizing were 60 ×60 pixels for the
axial direction, 68 ×63 pixels for the sagittal direction and
72 ×67 pixels for the coronal direction.
Several groups of expended ROI patches were generated

for the ResNet model, to explore whether tissues around
the tumor can contribute to cancer assessment. The min-
imum bounding rectangle was enlarged in both height
and width, with an interval of 10 pixels. We cropped
and resized the patches in the same manner as in the
original group ROI patches in three directions. For axial
images, we generated 3 groups of patches as the subse-
quent experimental dataset. The sizes were 70 ×70 pixels
for A1-set, 80 ×80 pixels for A2-set and 90 ×90 pixels
for A3-set. Similarly, we generated 2 groups of patches
for sagittal images (78 ×73-pixel patches of S1-set and
88 ×83-pixel patches of S2-set) and coronal images (82
×87-pixel patches of C1-set and 92 ×97-pixel patches
of C2-set). The CT images of all patients in the train-
ing cohort were constructed using the above steps. The
detailed workflow of ROI patch generation and relative
expansion is shown in Fig. 1.

Data augmentation
DL networks are often data-driven architectures, and
data augmentation is an effective way to improve the
model and reduce overfitting. Therefore, we augmented
the training dataset by introducing random rotations
and translations, generating ’new’ training data. The

augmentation technique allows us to further increase the
size of our training cohort. All images were converted into
5 pixels, 10 pixels, 15 pixels, and 20 pixels and rotated by
3°, 6°, 9°, 12°, and 15°. Then, the above 9 transformations
and original images were separately rotated by 1°, 2°, 3°,
4°, and 5°. Therefore, the number of images in the primary
cohort expanded to 50 times its initial scale.

ResNet
A ResNet was applied to train the imaging data and build
our neural network model. There are six residual learning
blocks. As shown in Fig. 2, for input x, the residual block
output y is defined as:

y = σ(F(x,Wi) + x)

where the function is the i-th residual mapping and σ

denotes the rectified linear unit (ReLU) [19] process. The
kernel size of all the convolution layers is 5 ×5. Then,a
max-pooling layer, a fully connected layer and a soft-max
layer are implemented.
In the training phase, we trained the ResNet model

with the constructed datasets in the portal venous phase
images of the axial, coronal, and sagittal directions. The
datasets in each direction contained both the original
patch and the extended patch. We fed the ResNet with
patches of different sizes and obtained 10 correspond-
ing pre-trained models, which were models with original
axial patches, A1-set, A2-set, and A3-set, original sagittal
patches, S1-set and S2-set, and original coronal patches,
C1-set and C2-set. In the testing phase, we evaluated
the performances of the above 10 pre-trained models,
respectively.
All experiments were performed on the workstation

of a Windows 10 64-bit operating system with a 64-GB
memory and an NVIDIA GeForce GTX 1080 GPU. Data
normalization and ROI generation were performed in
MATLAB 2016b. Data augmentation, training and testing
for all the ResNet models were developed on the Keras
library with a TensorFlow backend. When training the
ResNet, the Adam optimization function was used with a
batch size of 40 and a learning rate of 0.001.

Radiomics model
We also explored a radiomics model with RFC to pre-
dict KRASmutations and compared it with the DLmodel.
Random forest classifier has been a prevalent data min-
ing and statistical tool because of its transparency and
great success in classification and regression task [20,
21]. A total of 1025 features, including tumor intensity,
shape and size, texture, and wavelet characteristics, were
extracted from the primary tumors based on the manually
delineated ROI. Detailed descriptions of these features are
shown in Supplementary Information 4.1. Feature selec-
tion and modelling were based on the training cohort. A
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Fig. 1 The flow chart of ROI-patch generation. A minimum circumscribed rectangle is established around each irregular ROI. Then, the boundary of
the minimum rectangle is equally expanded with an interval of 10 pixels. This procedure is repeated for the three orthogonal directions (axial,
sagittal, and coronal)

Fig. 2 The structure of the employed residual neural network. There are six identity blocks, a pooling layer, a fully-connected layer and a softmax. Each
identity block has three convolutional layers. The kernel size of all the convolution layers is 5 ×5. ReLu are adopted after every convolutional layer
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univariate analysis was performed for each feature. Fea-
tures with P values <0.05 were considered associated
with KRAS mutations and were incorporated into the
least absolute shrinkage and selection operator (LASSO)
logistic regression model with 10-fold cross-validation.
We established a radiomics model with an RFC accord-
ing to the low-dimensional radiomics feature signature.
The RFC consists of multiple classification and regression
trees (CARTs), which are highly accurate and tolerant to
exception values and noise without being prone to over-
fitting. Detailed descriptions of the radiomics method are
shown in Additional file 1.

Results
Patient demographics
The demographic and tumor characteristics in the train-
ing and testing cohorts are listed in Table 1. Based on the
results of KRAS status, the patients were classified into
two groups: the mutated group and the wild-type group.
Regarding gender, age and TNM stage, no demographic
differences were observed between the two groups in

both cohorts (p >0.05). However, for tumor size, sta-
tistical significance was found in both cohorts (P val-
ues <0.05). There were significant differences in tumor
location between the two groups in the testing cohort,
but these differences were not confirmed in the training
cohort.

Predictive performance of the ResNet classification model
We investigated the predictive model for KRAS gene
mutation for CRC patients based on CT images in three
positions: axial direction, coronal direction and sagittal
direction. Metrics of the AUC, sensitivity and specificity
were used to evaluate the performances of the networks.
In addition, several groups with different input sizes were
carried out to explore the effect of the surrounding tissue
on classification accuracy. All the results for the testing
cohort are displayed in Table 2. Figure 3a shows the AUC
in the axial direction peaked at 0.93 when the input was
’ROI and 20-pixel’, and the increase in the AUC value
was limited by the expansion of the input size. Figure 3b
and c show that the inclusion of surrounding tissues did

Table 1 Demographic differences in the training and testing cohorts No, number; m, median; SD standard deviation

Characteristics
Training cohort p value Testing cohort p value

Wild-type group Mutated group Wild-type group Mutated group

Gender (No [%]) 0.3239 0.4753

Male 36(59.02) 38(67.86) 18(81.81) 13(72.22)

Female 25(40.98) 18(32.14) 4(18.18) 5(27.78)

Age (m ± SD) 59.80 ±11.05 60.33 ±9.84 0.7853 57.68 ±9.86 59.56 ± 0.5389

Tumor size, (cm ± SD) 3.49 ±1.21 3.05 ±1.18 0.0492* 3.55 ±1.29 4.8 ±1.74 0.0129*

Tumor location (No [%]) 0.8668 0.0419*

Ascending colon 4(6.56) 5(8.93) 0(0.00) 4(22.22)

Transverse colon 3(4.92) 3(5.36) 1(4.55) 0(0)

Descending colon 4(6.56) 2(3.57) 4(18.18) 3(16.67)

Sigmoid colon 27(44.26) 25(44.64) 11(50.00) 4(22.22)

Rectum 15(24.60) 18(32.14) 6(27.27) 4(22.22)

Cecum 7(11.48) 4(7.14) 0(0.00) 3(16.67)

T category (No [%]) 0.0928 0.2645

T1 1(1.64) 0(0.00) 0(0.00) 0(0.00)

T2 5(8.20) 2(3.57) 2(9.09) 0(0.00)

T3 41(67.21) 49(87.5) 17(77.27) 13(72.22)

T4 13(21.31) 5(8.93) 3(13.63) 5(27.78)

N category (No [%]) 0.2361 0.3657

N0 19(31.15) 12(21.43) 1(4.55) 0(0)

N1, N2 42(68.85) 44(78.58) 21(95.45) 18(100)

M category (No [%]) 0.6719 0.7814

M0 38(62.30) 37(66.07) 15(68.18) 13(72.22)

M1 23(37.70) 19(33.93) 7(31.82) 5(27.78)

p value <0.05 indicates a significant difference in patients’characteristics between the primary cohort and testing cohort. ∗, P < 0.05.
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Table 2 Performance of Models of the KRAS mutation prediction in testing cohorts

Model AUC Sensitivity Specificity

Radiomics model 0.82 0.7 0.85

ResNet model

Axial directions ROI only 0.9 0.65 0.83

ROI +10 pixels 0.9 0.67 0.83

ROI +20 pixels 0.93 0.59 1

ROI +30 pixels 0.72 0.67 0.63

Coronal direction ROI only 0.75 0.79 0.56

ROI +10 pixels 0.71 0.83 0.46

ROI +20 pixels 0.58 0.45 0.7

ROI +30 pixels 0.51 0.7 0.28

Sagittal directions ROI only 0.72 0.56 0.8

ROI +10 pixels 0.69 0.61 0.65

ROI +20 pixels 0.61 0.58 0.57

ROI +30 pixels 0.54 0.89 0.13

not contribute to the ResNet model either in the coro-
nal or sagittal direction. Figure 4 shows that the ResNet
model in the axial direction reached the higher AUC value
compared with the coronal and sagittal positions.

Predictive performance of the radiomics model
For the feature selection of the high-dimensional radiomic
features of the training cohort, 6-dimensional features of
P <0.05 are obtained by t-test. Then, the 4-dimensional
radiomics feature signatures are selected by LASSO reg-
ularization with 10-fold cross-validation. The feature
names, values and coefficients of the radiomics feature
signatures are shown in Additional file 1. We use RFC as
the basic model. The model parameters are n_estimators
= 200, max_depth = 4; that is, the number of CART is
200, and the maximum tree depth is 4. In the training
cohort, the AUC was 0.945 (sensitivity: 0.75; specificity:
0.94), and in the testing cohort, the AUC was0.818 (sen-
sitivity: 0.70; specificity: 0.85).In comparison, the ResNet
model showed better predictive ability. The ROC curves
are shown in Fig. 3a.

Discussion
Targeted treatments with anti-EGFRmonoclonal antibod-
ies (cetuximab and panitumumab) are recommended by
the NCCN for metastatic CRC patients whose tumors do
not harbour KRAS mutations [3, 4].The determination of
the KRAS mutational status in CRC patients is essential
for the management of CRC. However, several issues with
KRAS testing limit its utility, as described previously. The
aim of our study was to employ a ResNet model to pro-
vide a noninvasive preoperative prediction of the KRAS
mutational status. To the best of our knowledge, this is

the first study concerning the predictive value of DL based
on CT images in CRC. Previous studies have attempted
to investigate the relationship between image character-
istics and genetic mutations [6, 22, 23] or pathological
subtype [24, 25]. Compared with other medical imaging
technology, one of the challenges of DL is the requirement
of a large training dataset. A limited number of suitable
patients might lead to insufficient training data. There-
fore, in the study, data augmentation was used to increase
the size of the training dataset and prevent overfitting.
Besides, the ResNet with simple architecture and short
time consumption was enough to learn the predictive fea-
tures according to the satisfactory results in our study and
the other researchers [26, 27].
To explore the lesion-based prediction in three posi-

tions: axial, coronal, and sagittal, and the influence of
surrounding tissues on the classified results, we cropped
several groups of patches around the manually annotated
ROI. When the input was ‘ROI only’, the ResNet model
in the axial direction reached the higher AUC value com-
pared with the coronal and sagittal direction. That shows
the reconstructed images based on 2D axial images do
not contribute to the improvement of model performance.
One interesting finding is that the inclusion of surround-
ing tissues contributed to the ResNet just in the axial
direction, and the continuous expansion of the input size
limited the improvement of AUC.The AUC in the axial
direction peaked at 0.93 when the input was ‘ROI and 20-
pixel’, which indicated that the surrounding tissue could
contribute to the model’s performance. However, when
further expand the surrounding edge information, more
noise may be introduced, so the classification ability of the
network decreased. The inclusion of surrounding tissues



He et al. BMCMedical Imaging           (2020) 20:59 Page 7 of 9

Fig. 3 ROC curves for four KRAS mutations predicted by the residual neural network and radiomics models in testing cohort. a ResNet and
raidiomics predictions on different input in axial direction. b ResNet predictions on different input in coronal direction. c ResNet predictions on
different input in sagittal direction

for KRAS mutational classification in CRC which has
biological importance should be explored further.
Our study also compared the performances of the

DL method and the CT-based radiomics method. Some
studies found that slice thickness affected radiomic fea-
ture values and the performance of diagnostic models
[28, 29]. To reduce the effects of reconstruction slice thick-
ness on the performance of the radiomic model, we only
included images of the same thickness. However, the diag-
nostic performance of the ResNet model with 2D input
data was unaffected by slice thickness. Thus, the proposed
deep learning model is suitable for routine CT imaging
with other slice thickness. In our study, the proposed CT-
based radiomics signature incorporated four radiomics
features: two high-dimensional features obtained by the
LoG and two high-dimensional features obtained by the

wavelet transform, which are all conducive to classifica-
tion, shown in Additional file 1. We chose the RFC as the
machine learning classifier. The RFC consists of multiple
CARTs, and each CART trains the sub-classifier by boot-
strapping. Finally, the RFC predicts results through the
voting of each CART, so it has good generalization [30]. In
the training cohort, the AUC was 0.945 (sensitivity: 0.75;
specificity: 0.94), and in the testing cohort, the AUC was
0.818 (sensitivity: 0.70; specificity: 0.85). These results are
consistent with the results of other investigators [8]. The
clinical background and tumor stage were not used in the
radiomics model or the ResNet model to ensure the con-
sistency of the input data type. The comparison of the two
models indicates that the CT-based DLmodel could reach
the predictive level of the radiomics model in predicting
the KRAS mutation status of CRC patients, while the DL
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Fig. 4 The line chart of AUC values for each CNN with different inputs
in testing cohort. ResNet model in the axial direction reached the
higher AUC value compared with the coronal and sagittal

can simplify the multi-step pipeline of the conventional
radiomics method with little pre-processing and relatively
greater reproducibility [31].
There are several limitations to this preliminary study.

First, the number of study subjects was limited, and
although data augmentation was performed to increase
the size of the training cohort, it was still difficult to
observe a robust outcome. However, the deep neural net-
work has achieved good performance in many clinical
medical applications, both with large and relatively small
sample sizes [10, 32, 33]. Second, the input data type
was 2D and not 3D in the DL model. 3D deep learn-
ing requires significantly higher computation power than
sequential 2D image analyses. A further study with the
differences between 2D and 3D models of DL in predict-
ing KRAS mutations in CRC will need to be undertaken.
Third, our study analyzed the KRAS gene status of only
the RAS-RAF-MAPK pathway. The V-raf murine sarcoma
viral oncogene homolog B (BRAF) mutation is another
marker of anti-EGFR resistance in non-first-line treat-
ment of metastatic CRC. We did not accumulate enough
BRAF mutation cases because of its low prevalence in
CRC. Fourth, we included only a single-center cohort with
an internal testing set. In the future, large, multi-center
cohorts should be recruited for evaluation.

Conclusions
The aim of the present research was to develop and eval-
uate a DL model on contrast-enhanced CT before treat-
ment to noninvasively predict the KRAS status in CRC.
We also explored a radiomics model with RFC to compare
with the DL model (ResNet). The notable findings of our
study can be summarized as follows:

(1) Computerized assessment of the pre-treatment CT
images of CRC patients using DL has the potential to
precisely predict KRAS mutations. (2) The 2D ResNet
model in the axial direction reached the higher AUC value
compared with the coronal and sagittal direction. (3) The
continuous expansion of the input size with surrounding
tissues limited the performance of the ResNet model. (4)
CT-based DP model may reach the predictive level of the
radiomics model in predicting the KRAS mutation status
of CRC patients, while the DL can simplify the multi-step
pipeline of the conventional radiomics method .However,
there are still several limitations in the DL research field,
including the insufficient number of patients, and further
studies should be performed to optimize and verify its
utility.
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