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Abstract

Background: Hippocampal sclerosis (HS) is associated with post-surgery outcome in patients with temporal lobe
epilepsy (TLE), and an automated method that quantifies HS severity is still lacking. Here, we aim to propose an
MRI-based HS index (HSI) that integrates hippocampal volume and FLAIR signal to measure the severity of HS.

Methods: Forty-two pre-surgery TLE patients were included retrospectively, with T1-weighted (T1W) and FLAIR
images acquired from each subject. Two experienced neurosurgeons (W.D. and C.S.) and one neurologist (Q.L.)
rated HS severity with a four-class grading scale (normal, mild, moderate and severe) based on both hippocampal
volume loss and increased FLAIR signal. A consensus of HS severity for each subject was made by voting among
the three visual rating results. Regarding the automatic quantification, the hippocampal volume was quantified by
AccuBrain on T1W image, and the FLAIR signal of hippocampus was calculated as the mean intensity of
hippocampal region on the FLAIR image (normalized by the mean intensity of gray matter). To fit the HSI from
visual rating, we applied ordinal regression with the voted visual rating as the dependent variable, and
hippocampal volume and FLAIR signal as the independent variables. The HSI was calculated by weighting the
predicted probabilities of the four-class grading scales from ordinal regression.

Results: The intra-class correlation coefficient (single measure) of the three raters was 0.806. The generated HSI was
significantly correlated with the visual rating scales of the three raters (W.D.: 0.823, Q.L.: 0.817, C.S.: 0.717). HSI scores
well differentiated the different HS categories as defined by the agreed HS visual rating (normal vs. mild: p < 0.001,
mild vs. moderate: p < 0.001, moderate vs. severe: p = 0.001).

Conclusions: The proposed HSI was consistent with visual rating scales from epileptologists and sensitive to HS
severity. This MRI-based index may help to evaluate HS severity in clinical practice. Further validations are needed
to associate HSI with post-surgery outcomes.
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Background
Hippocampal sclerosis (HS) is the most common pathology
underlying medically intractable temporal lobe epilepsy
(TLE) [1]. The best option to enable the TLE patients
seizure-free is surgical resection, especially when HS is
present [2]. Moreover, HS severity was also found to associ-
ate with the long-term post-surgery outcome of TLE [3]. In
general, HS is confirmed with histopathological specimens
from the resected tissue, where an international consensus of
HS classification (ILAE) has also been built in the recent
years [4]. However, the neuropathological examinations are
invasive, and the presence of HS can only be identified after
surgical resection. To this end, noninvasive quantitative MRI
has played an important role in TLE diagnosis and treatment
of epilepsy since the early 1990s [5], particularly when sur-
gery is being considered [6].
The typical MRI features of HS include hippocampal

volume loss on T1-weighted (T1W) imaging and
increased signal intensity on T2-weighted (or FLAIR) im-
aging [6, 7]. As hippocampal atrophy can also be an age-
related change and increased T2 signal also presents with
lesions other than HS [8], these two features achieved bet-
ter detection of HS when used in combination [9–11].
However, unlike neuropathological examinations that re-
port HS pattern or severity (e.g. ILAE type [4] or Wyler
grading score [1]), MRI-based HS evaluation was generally
binary (presence of HS or not). This may result from the
lack of visual rating-based grading scale on MRI, which
can serve as the target of model fitting with quantitative
MRI features (as predictors). Although high resolution
MRI [12–14] (e.g. 7 T MRI) helps to visualize the features
of hippocampal substructures that were associated with
pathological grading scales, it cannot be applied to prac-
tice due to its limited access in clinical routine.
In this regard, we proposed a study to quantify HS severity

based onMRI features with two steps. First, a four-class grading
scale of HS based on MRI was constructed, where two experi-
enced neurosurgeons (with over 20 years of epileptic surgery)
and one experienced neurologist at the Epileptic Center were
involved for the visual ratings. Second, with the agreed HS rat-
ing on a TLE cohort, we fitted an ordinal regression model to
map the association between the MRI features (hippocampal at-
rophy and increased FLAIR signal) and the HS grading score,
resulting in a continuous index of HS. As the reliability of hip-
pocampal segmentation tool also matters in detection of HS
[15], we applied the recently validated software AccuBrain [16]
for the quantification of hippocampal volume and FLAIR signal.
The generated index of HS severity was compared with the vis-
ual rating categories of the raters for validation.

Methods
Subjects
We recruited 42 patients (21 male, 12–52 years, mean ±
SD age 29 ± 10 years) with TLE that was refractory to

medical therapy as diagnosed at the Epilepsy Center of
Peking Union Medical College Hospital. The data collec-
tion was conducted retrospectively. The inclusion cri-
teria were detailed as follows: (1) the semiology of the
patients matched typical clinical manifestation of tem-
poral lobe epilepsy; (2) the patients had undergone brain
MRI (both 3D T1-weighted (T1W) scan and 2D FLAIR
scan) before surgery; (3) the patients had evidence of
ictal or interictal epileptiform activity arising from tem-
poral lobe monitored with video electroencephalography
(VEEG); (4) the patients had pre-surgery PET/CT exam-
ination that indicated hypometabolism in temporal lobe.
(5) Indications of surgery for TLE were made through
multi-department consultations for the patients. The ex-
clusion criteria were: (1) patients with extra-temporal
lobe epilepsy; (2) presence of other lesions on MRI, such
as cavernous hemangioma and ganglioglioma; (3) the pa-
tients who only had 3D T1W scan or 2D FLAIR scan.

Data acquisition
A 3 T MR imaging system (Discovery MR 750 scanner,
GE Medical Systems) was used for image acquisition.
Three-dimensional sagittal T1W images were acquired
using a gradient echo sequence (BRAVO) with the fol-
lowing parameters: repetition time (TR) = 7.404 ms, echo
time (TE) = 2.82 ms, flip angle (FA) = 12°, inversion time
(TI) = 400 ms, matrix = 512 × 512, FOV = 512 × 512mm2,
number of slices = 180, slice thickness = 1.0 mm, no gap,
spatial resolution = 0.4688 × 0.4688 × 1mm3. Fluid-
attenuated inversion recovery (FLAIR) sequences were
acquired at the coronal plane with TR = 12,037.5 ms,
TE = 123ms, FA = 111°, TI = 2200ms, matrix = 512 ×
512, number of slices = 38, and slice thickness = 4.0 mm,
spatial resolution = 0.4297 × 0.4297 × 4mm3.

Visual rating
Visual rating was performed by two neurosurgeons
(W.D. and C.S.) with over 20 years’ experience in TLE
surgery and an experienced neurologist (Q.L.) at the Epi-
lepsy Center. A four-class grading system (0, normal; 1,
mild; 2, moderate; 3 severe) was applied according to the
raters’ experiences in surgery and each rater rated all the
TLE patients independently. For each rater, the patients
were rated twice at different time points, and a final
judgement was confirmed based on these two ratings.
Classic signs of MRI-based HS visual rating include re-

duction of hippocampal volume on T1W images and in-
creased signal observed on FLAIR images, which are
generally examined on coronal slices perpendicular to
the long axis of the hippocampus [6, 17]. The severity of
HS (grading score) was further estimated as follows: (1)
On T1W image, the patient will be rated as having se-
vere HS if the hippocampal volume decreases by over
50%, and rated as moderate or mild HS for a reduction
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of hippocampal volume by 25% ~ 50% or < 25% respect-
ively; if no obvious hippocampal volume reduction is
found, the subject will be rated as normal as far as T1W
is concerned; (2) On FLAIR image, the intensity within
hippocampus was compared with the surrounding grey
matter to rate the strength of increased signal as part of
HS severity from the perspective of FLAIR-based rating;
(3) the ratings of T1W and FLAIR images were finally
integrated with a linear combination (the empirically de-
fined weights: 0.8 for T1W-based rating and 0.2 for
FLAIR-based rating) to generate a synthetic four-class
grading score.
Images were also carefully examined by the investigators

in light of the clinical and EEG data of each patient [10].
When the ratings from the three raters were ready, a sim-
ple voting was performed to make an agreed HS grading
for each individual. To evaluate the inter-rater reliability
of the three raters, the intraclass correlation coefficient
(ICC) was also tested using Cronbach’s alpha [18].

Image processing
Hippocampal volumetric analysis were performed with
AccuBrain® (on T1W MRI scans), which has achieved
the best performance in hippocampal segmentation
among the existing automatic brain segmentation tools
in a recent validation study [16]. The absolute volume of
hippocampus was normalized by intracranial volume
(ICV), and the resulting hippocampal volume ratio (% of
ICV) was used as one predictor for model construction
in the following section. Grey matter (GM) tissue of the
whole brain was also segmented on T1W with Accu-
Brain. The masks of hippocampus (both left and right)
and GM from segmentation were projected from the
T1W image to the FLAIR image of the subject with af-
fine registration [19]. The resulting masks were used to
outline the hippocampal and GM regions, and thus to
calculate the average intensity of hippocampus and GM
on FLAIR image in a case-by-case manner. Here, the
mean intensity of hippocampus (or GM) on FLAIR
image was calculated by averaging the intensities of all
the voxels within the hippocampus (or GM) mask of the
specific subject. The relative intensity of hippocampus
on FLAIR (calculated as the ratio of mean intensity of
hippocampus to the mean intensity of GM within a spe-
cific subject, based on the hypothesis that the signals
within the hippocampus mask and GM mask follow the
Gaussian distribution with a single peak) was used as an-
other predictor for model construction.

Statistical analysis
The T1W-based predictor (hippocampal volume) and
the FLAIR-based predictor (relative intensity of hippo-
campus) were first used to fit a model with the grading
scale from visual rating as the outcome. Here, we flipped

the right hippocampus to the left to enlarge the data size
for model fitting (i.e. 84 hippocampal data in 42 TLE pa-
tients). As the grading scale is an ordinal variable, we ap-
plied ordinal regression (OR) to for model fitting.
Among the OR approaches in the literature [20], we se-
lected the threshold models (where an unobserved con-
tinuous variable is assumed to underlie the ordinal
response) for examination, including Proportional Odds
Model [21] (POM, a linear model extended from logistic
regression), Neural Network based POM [21] (NNPOM,
nonlinear generalization of POM), Support Vector Or-
dinal Regression with Explicit Constraints [22] (SVOREX),
SVOR with Implicit Constraints [22] (SVORIM), Kernel
Discriminant Learning for Ordinal Regression [23]
(KDLOR), and Reduction from Ordinal Regression to Bin-
ary Support Vector Machine [24] (REDSVM). The imple-
mentation of these methods is available for free from the
website of the authors of the OR review paper [20] (http://
www.uco.es/grupos/ayrna/orreview).
A 5-fold cross-validation (where each fold was once

used for testing and the remaining folds were used for
training) was performed when fitting each of the five
models. The model performance was comprehensively
evaluated with three metrics: (1) mean accuracy (ACC),
a rigorous metric that indicates the ratio of correctly
predicted cases (of any class) among all cases; (2) mean
absolute error (MAE) [25], the average deviation be-
tween predicted and actual targets in number of categor-
ies; (3) Spearman’s rank correlation (R), nonparametric
correlation between the predicted and actual categories.
The best model is expected to have the optimal balanced
prediction performance (ACC + R - MAE) after param-
eter optimization. Also, the optimal model should also
have as few parameters to train as possible to control
overfitting [26] given the small sample size in this study.
To further generalize the ordinal outcome of the opti-

mal model to a continuous HS index (HSI), we applied a
weighted linear combination of the probability of each
category (as generated by the optimal OR model):

HSI ¼ P1 þ 2�P2 þ 3�P3ð Þ=3 ð1Þ

Where P1, P2 and P3 indicate the probability of mild,
moderate and severe HS for a specific subject; the prob-
ability of no HS (normal, P0) is not included for HSI cal-
culation as it would have a term of (0*P0) that has no
contribution to the formula. The HSI ranges from 0 to
1, where a larger HSI indicates more severe HS.
To evaluate the performance of HSI in differentiating

visual rating-based HS categories, we compared the HSI
of different visual rating-based categories with Mann-
Whitney U test (especially between normal vs. mild,
mild vs. moderate and moderate vs. severe HS). Also,
Spearman’s rank correlation tests were performed to

Dou et al. BMC Medical Imaging           (2020) 20:42 Page 3 of 7

http://www.uco.es/grupos/ayrna/orreview
http://www.uco.es/grupos/ayrna/orreview


evaluate the consistency of HSI with the rating scores of
the three raters.

Results
According to the voted visual rating, there were 4 sub-
jects with no HS (age 30.5 ± 11.0 years), 11 subjects with
bilateral HS (age 26.6 ± 11.6 years), 15 subjects with left
HS (age 27.3 ± 9.0 years), and 11 subjects with right HS
(age 33.6 ± 8.2 years) in our TLE cohort. By flipping the
hippocampal data of the study cohort, each hippocam-
pus was rated with the four-class HS grading scale inde-
pendently, with the group size and the relevant
characteristics (e.g. age or onset years of TLE corre-
sponding to a specific hippocampi) shown in Table 1.
Regarding the voting of the visual ratings, at least two
raters had agreement on HS grading for all the hippo-
campus, and the raters had better agreement on normal
hippocampi (21 of 35 normal hippocampi agreed by all
the three raters) than the other categories (e.g. 3 of 16
mild HS agreed by all the three raters). As shown in
Table 2, the three raters achieved comparable intra-rater
reproducibility (mean ICC of single measures 0.832) and
the inter-rater reliability was relatively high (0.806 for
single measures of ICC).

Model selection with cross-validations
In general, the performances of the various ordinal re-
gression models were very similar (Table 3). Although
the KDLOR model achieved the best performance (in
terms of ACC + R - MAE), it requires three parameters
for model training. In this regard, we selected the trad-
itional POM, which achieved similar performance with
KDLOR and does not need any model parameters to
train.
The mean ACC, MAE and R during the 5-fold cross-

validations were displayed for each optimized ordinal re-
gression (OR) model. The searching ranges of the model
parameters follow the OR review paper [20]: H∈{5,10,20,
30,40}, k∈{10−3,10−2,…,103}, c∈{10− 3,10− 2,…,103},
u∈{10− 6,10− 5,…,10− 2}. ACC, accuracy; MAE, mean ab-
solute error; R, Spearman’s rank correlation; POM, pro-
portional odds model; NNPOM, Neural network based
on POM; SVOREX, support vector ordinal regression

with explicit constraints; SVORIM, support vector or-
dinal regression with implicit constraints; KDLOR, ker-
nel discriminant learning for ordinal regression;
REDSVM, reduction from ordinal regression to binary
support vector machine. H, the number of hidden neu-
rons; k, the width of Gaussian kernel function; c, cost
parameter of all SVM methods; u, additional parameter
of KDLOR that is intended to avoid singularities in the
covariance matrices [20].

Comparison of HSI with visual rating
As POM was selected based on the performance of 5-
fold cross-validations, we fitted a POM model based on
the entire database and used the generated probability of
each category to calculate the HSI according to Eq. (1).
As shown in Fig. 1, the fitted HSI well differentiated the
four categories, with little overlap of boxplots between
any of the adjacent two categories. As confirmed by the
Mann-Whitney U tests, the HSI was significantly larger
in a more severe HS category than its adjacent HS cat-
egory (NC <mild HS, p < 0.001; mild HS <moderate HS,
p < 0.001; moderate HS < severe HS, p = 0.001). The HSI
also performed well in a more general differentiation
task (i.e. NC vs. HS, where the subgroups with mild to
severe HS were combined as a whole HS group), with al-
most non-overlapped boxplots of NC and HS as shown
in Supplementary Figure S1. In addition, the fitted HSI
had high correlations with the grading scales of each
rater (mean 0.786), which were comparable to the inter-
rater correlations of the grading scales (mean 0.806) as
shown in Table 4.

Discussion
In this study, for the first time we constructed an auto-
mated MRI-based index (HSI) to depict the HS severity
in medically intractable TLE patients. The HSI was gen-
erated by fitting an optimized OR model with the hippo-
campal volume and hippocampal FLAIR signal as the
predictors and the proposed four-class grading scales
from visual inspection as the reference outcome.
Hippocampal volume and T2 or FLAIR signal have

been widely applied (either individually [27, 28] or in
combination [7, 9–11]) to differentiate hippocampus

Table 1 Characteristics of the TLE patients in different HS categories

Normal Mild HS Moderate HS Severe HS

Group size by voting 35 19 22 8

Agreed by 2 raters 14 16 18 7

Agreed by 3 raters 21 3 4 1

Age, years, mean ± SD 30.1 ± 9.2 29.4 ± 11.0 27.9 ± 9.2 27.8 ± 12.2

Gender, male 18 7 13 4

Onset, years, mean ± SD 13.3 ± 8.2 11.4 ± 7.4 14.1 ± 9.8 15.1 ± 7.5

The displayed characteristics correspond to the flipped hippocampal data. HS, hippocampal sclerosis

Dou et al. BMC Medical Imaging           (2020) 20:42 Page 4 of 7



with HS from that without HS in TLE patients, but no
study has applied these MRI features to evaluate HS se-
verity or category, which is associated with postoperative
outcome in TLE patients [3]. This might result from the
lack of golden standard for visual inspection of HS se-
verity as a reference. On the one hand, routine brain
MRI generally provides very limited information com-
pared with the neuropathological scans where visual
grading scales are available [1, 4]. Although high reso-
lution MRI scans (e.g. 7 T MRI) have been reported to
depict pathological information of HS [12–14], they can
rarely be used in clinical practice due to their high cost
and poor accessibility. On the other hand, a distinct
standard set for qualitative description of HS severity
has not been available yet even for the well-established
HS grading scales from neuropathological interpreta-
tions, as these pathological grading scales only provide
general descriptions of the location and degree of cell
loss and gliosis in hippocampus. In this regard, we
turned to integrate the experiences of visual inspection
for HS (on 3 T MRI) from epileptologists for a four-class
grading scale to rate HS severity. Although the proposed
grading scale was relatively subjective (i.e. the extent of
hippocampal atrophy and FLAIR hyperintensity in
hippocampus was scored only based on the experiences
of the raters), we found that at least two of the three
raters agreed on the rating of all the hippocampi of the
cohort with a high inter-rater reliability (ICC: 0.814 for
single measures and 0.929 for average measures).
Based on the voted rating scale from the three raters,

we tried a series of OR models [20] to map the raters’
subjective but consistent experiences of visual inspection
for HS into a quantitative model, with hippocampal vol-
ume and FLAIR intensity of hippocampus (% of GM

intensity) as the independent variables. A comprehensive
model selection was made among almost all the cur-
rently available threshold models of OR [20], with 5-fold
cross-validations to increase the generalizability of the
results. Although KDLOR achieved the best perform-
ance, it also required the most parameters to train,
which induced more chances of overfitting [26]. Finally,
we selected the POM model which ranked 3rd in model
performance and did not fall behind much compared
with the top two models (KDLOR and REDSVM, Table
3), as it required no model parameters to train. In POM,
the ordinal outcome is generated by weighting the prob-
ability of each category, and these probabilities provide
more information than the ordinal outcome (i.e. the pre-
dicted class) itself. In this regard, we integrated these
probabilities into a continuous HS score (i.e. HSI, as
shown in Eq. 1), where a more severe HS category would
contribute more to the HSI score assuming that the
probability of each category was the same. The resulting
HSI well differentiated the visual rating-based HS cat-
egories (Fig. 1, Table 4), which indicated that the auto-
mated MRI-based index indirectivity learned the
experiences of epileptologists on HS rating.
There are several limitations to this study that should

be considered. First, the sample size of the study cohort
is relatively small, and an external validation dataset is
not available. However, we applied cross-validations and
comprehensive model selections with least parameters to
train, aiming to make the results as generalizable as pos-
sible. Further validations should be made in a larger co-
hort to test the reliability of the proposed POM model
to calculate HSI. Of note, age and gender were not in-
cluded in the model construction for the HSI, as they
were not correlated with the grading score in the study

Table 2 Intra-rater reproducibility and inter-rater reliability of the three raters

ICC single measures (95% CI) ICC average measures (95% CI)

Intra-rater reproducibility

Rater W.D. 0.874 (0.825–0.912) 0.954 (0.934–0.969)

Rater Q.L. 0.878 (0.831–0.915) 0.956 (0.937–0.930)

Rater C.S. 0.744 (0.657–0.816) 0.897 (0.852–0.930)

Inter-rater reliability 0.806 (0.736–0.863) 0.926 (0.893–0.950)

The displayed ICC coefficients were all significant at the level of p < 0.001. ICC Intraclass correlation coefficient, CI Confidence interval

Table 3 Performance of different ordinal regression models in 5-fold cross-validations

Model ACC MAE R ACC + R - MAE Optimized parameter(s)

POM 0.6919 0.3199 0.8428 1.2148 –

NNPOM 0.6801 0.3551 0.8391 1.1641 H = 5

SVOREX 0.6794 0.3441 0.8472 1.1825 k = 10, c = 10

SVORIM 0.6912 0.3324 0.8310 1.1898 k = 10, c = 10

KDLOR 0.7037 0.3081 0.8527 1.2483 k = 1, c = 0.1, u = 10−6

REDSVM 0.7037 0.3199 0.8386 1.2224 k = 10, c = 10
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cohort. Future work might also include these covariates
if they present correlation with the target HS severity
when a larger sample for model construction is available.
Second, the proposed grading scale of HS severity from
visual inspection was relatively subjective. However, the
involved three raters achieved good intra-rater reprodu-
cibility and inter-rater reliability (Table 2), which indi-
cated that a consistent visual rating can be realized
under this grading scheme among experienced neuro-
surgeons and neurologists at the Epilepsy Center. In
addition, regarding the type of T2 signal (one of the
MRI features to measure HS), we applied normalized
FLAIR intensity instead of T2 relaxometry although the
latter one was more widely used in the existing studies.
It was because the T2 relaxometry sequence was not avail-
able in our study cohort. As a recent study reported that
T2 relaxometry was more sensitive than normalized
FLAIR intensity to detect HS (when hippocampal atrophy
was not considered) [29], future work should aim to test if
T2 relaxometry would also contribute to a better evalu-
ation of HS severity when hippocampal atrophy is also
considered in the model. Furthermore, a comprehensive
pathological validation of the proposed HSI was not avail-
able in this study, as only a small subset of the participants
had the surgical samples (Supplementary Table S1) that
could be used for evaluation of HS pathology due to the

retrospective design of this study. Although the absolute
certainty for the presence of HS cannot be assured with-
out postresection outcomes, the distribution of HSI pre-
sented very little overlap between visual rating-based NC
and HS groups (Supplementary Figure S1), indicating the
potential of HSI as a screening tool before possible sur-
gery. The consistency of MRI-based HSI with the surgical
samples still warrant further validations with a larger sam-
ple of postresection outcomes. Finally, post-surgery out-
comes of the TLE cohort were not yet available, and our
following validations will focus on the associations be-
tween HSI and post-surgery outcomes to evaluate the use
of HSI in clinical practice.

Conclusions
In summary, this study proposed an MRI-based index
(HSI) based on automatic quantification of hippocampal
atrophy and increased FLAIR intensity to measure the
severity of HS. The proposed HSI showed high
consistency with the visual rating scales from experi-
enced epileptologists. The HSI may help to evaluate HS
severity in clinical practice, which warrants further vali-
dations in a larger sample of TLE patients with access-
ible post-surgery outcomes.
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1186/s12880-020-00440-z.

Additional file 1: Figure S1. Boxplots of HSI for NC and HS groups as
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NC = normal control. Table S1. Pathological data for a subset of the
study cohort after tissue resection surgery
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