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tissues in gray-scale intravascular
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Abstract

Background: IVUS is widely used to quantitatively assess coronary artery disease. The purpose of this study was to
automatically characterize dense calcium (DC) tissue in the gray scale intravascular ultrasound (IVUS) images using
the image textural features.

Methods: A total of 316 Gy-scale IVUS and corresponding virtual histology images from 26 patients with acute
coronary syndrome who underwent IVUS along with X-ray angiography between October 2009 to September 2014
were retrospectively acquired and analyzed. One expert performed all procedures and assessed their IVUS scans.
After image acquisition, the DC candidate and corresponding acoustic shadow regions were automatically determined.
Then, nine image-base feature groups were extracted from the DC candidates. In order to reduce the dimensionalities,
principal component analysis (PCA) was performed, and selected feature sets were utilized as an input for a deep belief
network. Classification results were validated using 10-fold cross validation.

Results: The dimensionality of the feature map was efficiently reduced by 50% (from 66 to 33) without any
performance decrease using PCA method. Sensitivity, specificity, and accuracy of the proposed method were
92.8 ± 0.1%, 85.1 ± 0.1%, and 88.4 ± 0.1%, respectively (p < 0.05). We found that the window size could largely
influence the characterization results, and selected the 5 × 5 size as the best condition. We also validated the
performance superiority of the proposed method with traditional classification methods.

Conclusions: These experimental results suggest that the proposed method has significant clinical applicability for
IVUS-based cardiovascular diagnosis.
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Background
Atherosclerotic cardiovascular diseases are known to be
the leading cause of morbidity and mortality in developed
countries. Atherosclerotic plaques are typically composed
of lipids, inflammatory cells, and calcium deposits [1] and
the disruption of these plaques depends on the compos-
ition of the tissue components, with tissue compositions

being classifiable calcified, fibrous, fibro-lipid, and necrotic
[2]. Therefore, analyzing plaque composition is an import-
ant procedure that will allow the physicians to acquire an
overall status of the disease and determine the appropriate
interventional therapies.
Intravascular ultrasound (IVUS) is a catheter-based im-

aging modality that provides real-time tomographic views
of the coronary arteries and allows for a detailed
visualization of the plaque [1]. The use of IVUS has been
crucial for the quantitative assessment of coronary artery
disease. Provided a gray-scale IVUS image, expert physi-
cians are able to manually determine the vessel borders
from lumen to media-adventitia, where the atherosclerotic
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plaques are distributed, and then differentiate between the
plaque components using their echogenicity. The primary
limitation of the gray-scale IVUS in the plaque
characterization is that the gray-level appearance (echo-
genicity) does not correspond well with the plaque
constituents [3]. For example, it is very difficult to differ-
entiate between fibrous and fibro-lipid tissues only using
the observable characteristics owing to similar intensity
ranges. Therefore, the manual identification of the cross-
sectional images is not straightforward and is susceptible
to inter-observer and intra-observer reliability.
Virtual histology (VH) is a fully automated and clinically

available technique that characterizes plaque components
by exploiting the reflected ultrasound radio-frequency
(RF) signals. VH-IVUS is able to identify the four plaque
types including fibrous tissue (FT), fibro-fatty tissue (FFT),
necrotic core (NC), and dense calcium (DC), using a
color-coded map [4, 5]. Among these tissues, the amount
of DC is an important indicator of atherosclerotic disease
[6], as it is strongly associated with the overall risk of acute
myocardial infarction as well as with complications and
success rates following percutaneous coronary interven-
tion [7, 8]. The calcified plaque also enables inference of
the entire plaque burden and overall disease status [9].
Therefore, the quantitative analysis of the DC can be used
to reduce the risk of occlusions and operations.
In order to precisely and efficiently detect the calcified

region, several automated plaque characterization ap-
proaches have been suggested in terms of the RF signal,
image texture, and combined feature groups. The biggest
benefits of the RF-based approaches are the reduction of
the feature dimensionality and the largest increase in
computational speed [5, 10–20]. Moreover, as previously
shown in various histologic analyses, these methods
revealed outstanding classification results for vessel com-
positions. However, all of the RF-based methods suffer
from the reduced longitudinal resolution caused by its
electrocardiogram (ECG)-gated acquisition [1, 21].
Therefore, it is not allowed to analyze all image slices
and construct a three-dimensional map for the whole
vessel region. On the other hand, the image texture-
based approaches are able to analyze all the gray-scale
image frames [1, 2, 21–32]. Textural analysis approaches
attempt to quantify the perceived texture of lesion
mostly based on the spatial characteristics or echogeni-
city. These methods can be implemented into any types
of IVUS images which are obtained from various com-
mercial IVUS systems without the need for any special
software such as VH-IVUS. The RF-image combined
approach has potential clinical applicability, since it
complements the abovementioned problems. However,
only a few studies [27, 33] have been carried out to date
examining this, and the increasing computational time
remains an unsolved problem. Therefore, the purpose of

this study was to automatically characterize DC tissue in
the gray scale IVUS images based on the image textural
features.

Methods
Patients
We retrospectively analyzed patients with acute coronary
syndrome who have undergone IVUS examination along
with X-ray angiography at our hospital during a 5-year
period (October 192,009 to September 302,014). One ex-
perienced cardiologist with over 20 years of experience
in cardiovascular diagnosis performed all procedures
and reviewed the results. The inclusion criteria for the
study included (1) availability of both the IVUS and X-
ray angiography; (2) diagnosed with acute coronary syn-
drome; and (3) enough image quality of IVUS images.
The exclusion criteria were as follows: 1) patients with a
stent implantation; 2) patients with a bypass graft, and
3) poor image quality. After screening, a total of 316 Gy-
scale IVUS and their corresponding VH-IVUS images
were obtained from 26 patients with 26 lesions. All le-
sions were located in right coronary artery. This study
was approved by the local ethics committee. Due to the
retrospective nature of the study, written informed con-
sent was waived.

Image data acquisition
Prior to image acquisition, the plaque regions from in-
tima to media-adventitial borders were automatically de-
termined using our previously proposed method [34]
and manually corrected by the clinician. VH analysis was
performed only on these plaque regions and the output
images were stored in the BMP format. Figure 1 shows
the overall tissue characterization procedure of the pro-
posed method.
IVUS imaging was performed using an imaging sys-

tem incorporating a commercially available 20MHz
Eagle Eye catheter (Volcano Therapeutics Inc., Ran-
cho Cordova, CA, USA). The catheter was advanced
over a conventional guidewire until reaching the
lesion of interest, and the catheter position was vali-
dated using X-ray angiography. The pullback was per-
formed with a pullback speed of 0.5 mm/s, acquiring
30 frames/s during image acquisition. IVUS images
were recorded along with a simultaneous ECG at
400 × 400 pixels in 8-bit grayscale.
The attained VH-IVUS images typically exhibited

different proportions of the plaque components in the
order of FT > FFT > NC > DC. In order to avoid any
possibility of biased training of the classification
model, their proportions were adjusted to a 1:1 ratio.
Consequently, the training data set contained approxi-
mately 3,000,000 labeled pixels and these were divided
into non-DC and DC groups in equal proportion.
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Non-DC group comprises FT (500,000 pixels), FFT
(500,000 pixels), and NC (500,000 pixels), while the
DC group only includes NC tissue (1,500,000 pixels).
Each pixel in the input gray-scale IVUS images was
classified into one of two groups on the basis of the
related ground truth (VH-IVUS).

Segmentation of DC candidate and acoustic shadow
regions
The DC candidate and corresponding acoustic shadow
regions were automatically detected by the dual-
threshold-based segmentation method [32] prior to
tissue characterization. The original IVUS image in
Cartesian coordinates is relatively difficult to handle
due to the circular trait of vessels (Fig. 2a). In order
to simplify the segmentation procedure, the IVUS
image was converted into polar coordinates (Fig. 2b).
The catheter typically induces an unnecessary dead
zone in the center of the IVUS image, equivalently at
the top rows of the polar domain with imaging arti-
facts. Therefore, the constant dead zone was acquired
by calculating the minimum image over 316 IVUS se-
quences (Fig. 2c), and this was subtracted from every

frame in order to avoid interference of the catheter
(Fig. 2d).
The initial DC candidates were obtained by extracting

regions having higher pixel intensity than THhigh in
plaque regions (Fig. 3a):

RIDC i; jð Þ ¼
X

IIDC i; jð Þ > THHigh
� �� �

∈PR ð1Þ

where RIDC and IIDC(i,j) indicate the initial DC candi-
date region and the intensity of the pixel (i, j), re-
spectively. High threshold (THHigh) detects the initial
DC candidate, and PR denotes the plaque region. In
order to remove noises in the output image, morpho-
logical operations, comprising erosion and dilation,
were subsequently used (Fig. 3b). In terms of math-
ematical morphology, a structuring element was a
disk at a size of 1 × 1 pixel. As depicted in Fig. 3b,
there are numerous DC candidates which are distrib-
uted very closely and may have similar or identical
acoustic shadows. Therefore, the convex hull of these
regions was computed using the plane sweep method
[35] in order to minimize the computational time

Fig. 1 Overall workflow of the proposed method for DC characterization (DC: dense calcium, and PCA: principal component analysis). The proposed
method has two slightly different pipelines for training and testing data sets. Feature selection was only performed on the training set. When testing
the network, only the selected features were extracted
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when the shortest distance of adjacent candidate was
less than 10 pixels (Fig. 3c).
The resulting regions were assigned to the final DC candi-

date or non-calcified classes according to the presence or ab-
sence of shadow. The average intensity of the vertical
shadow mask having the same width as the output candidate
was calculated (Fig. 3d) and the pixels that satisfied IAS <
TLow were finally considered as the final DC candidates (Fig.
3e). Consequently, only the region that satisfied the following

dual threshold condition was accepted as the final DC
candidate.

RDC i; jð Þ ¼
X

IIDC i; jð Þ > THHigh
� �

and IAS i; jð Þ < THLowð Þ� �
∈PR

ð2Þ

where RDC and IAS are the final DC candidate and intensities
of the acoustic shadow, respectively. Low threshold (THLow)
assesses the existence of shadow. The dual-threshold values
of THHigh and THLow were empirically selected at 160 and
50, respectively, by computing the mean intensity of DC and
the shadow regions in all of the IVUS images. Figure 3f de-
picts the finally obtained DC candidate with its correspond-
ing shadow region.

Feature extraction
In order to accurately detect the DC plaque, nine image-
based feature groups comprising 66 different features were
automatically extracted from a total of 3,000,000 pixels in the
plaque regions by shifting a moving window from the top left
to the bottom right of each image. Each feature extraction
method was selected for its successful report of tissue
characterization in two-dimensional (2D) gray-scale images.
A set of all features was extracted for each pixel in the DC
candidate using a 5 × 5 moving window.

First order statistics (FOS)
Statistical features derived from FOS are significant indicators
of spatial relationship. FOS analyzes the image characteristics
based on the gray-level distribution histogram. Five features,
namely mean, skewness, kurtosis, variance, and standard devi-
ation were extracted from a 5× 5 window mask. Detailed de-
scriptions and equations are referred to in [36, 37].

Intensity
Intensity is the gray-scale value of each pixel obtained by the
amplitude of the reflected ultrasound RF signal from plaque
components [38]. As reported in [30], the plaque compo-
nents typically have a different intensity distribution whereby
NC and DC shows higher echo-intensities than FT and FFT
(Fig. 4). Additionally, DC contains the highest intensity com-
ponents due to its echogenic characteristic.

Geometrical distance features (GDF)
The GDF indicates a Euclidean distance of each DC candi-
date from a specific location and can be divided into three
sub-features (GDF1, GDF2, and GDF3). First, the GDF1 de-
scribes the perpendicular distance of a pixel that belongs to
the DC candidates from the center of the catheter. The sec-
ond geometrical feature, GDF2, is the relative position of the
DC candidate pixel from the media-adventitial borders, while
the GDF3 indicates the relative position from the lumen and
media-adventitial borders [1].

Fig. 2 a The original IVUS image in Cartesian coordinate, (b)
converted IVUS image in polar coordinate, (c) constant dead zone,
(d) subtracted image
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Fractal dimension (FD)
The FD is a measure of complexity that quantifies the
fractal patterns of its intensity surface as the ratio of the
change in detail to the change in scale. Despite not being
self-similar over all of the scales, the reflected RF signals
from plaque components typically generate some level of
self-similarity within some range [39]. Therefore, the
fractal dimensions of plaque components can be a

significant indicator for the differentiation of DC tissues.
In this paper, the FD of tissue component patterns was
computed using the box counting method [40, 41].

Gray Level Co-Occurrence Matrix (GLCM)
GLCM estimates the co-occurrence values of gray-level
pairs from angular nearest-neighbor spatial-dependence
matrices [1, 42]. For a fixed window size, the co-

Fig. 3 a The initial DC candidates, (b) morphological operations, c convex hull, (d) vertical shadow mask, (e) final DC candidate, and (f) finally
obtained DC candidate with corresponding acoustic shadow

Fig. 4 Intensity distributions of four plaque components. a is fibrous tissue (FT), (b) is fibrofatty tissue, (c) is necrotic core, and (d) is dense calcium
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occurrence matrix (CM) for an h x w plaque region (PR)
can be defined as follows:

CMΔx;Δy i; jð Þ ¼
Xh

x¼1

Xw

y¼1

1; if PR x; yð Þ ¼ i and PR xþ Δx; yþ Δyð Þ ¼ j
0; otherwise

ð6Þ

where i and j denote the pixel values and x and y indi-
cate the spatial positions in PR. The offsets (Δ x, Δ y) de-
termine the spatial relations of the calculated matrix. In
our experiments, the distance was set to D = 1 and the
orientation angle was designated as one of four values
(0°, 45°, 90°, or 135°). The features obtained by the differ-
ent orientations were then averaged in order to guaran-
tee rotational invariance. A total of 19 features
comprising autocorrelation, contrast, correlation, cluster
prominence, cluster shade, dissimilarity, energy, entropy,
homogeneity, maximum probability, sum of squares,
sum average, sum variance, sum entropy, difference vari-
ance, difference entropy, information measure of correl-
ation, maximal correlation coefficient, and inverse
difference normalized, were computed from the GLCM
matrix [42].

Gray level run length matrix (GLRLM)
GLRLM features provide the textural patterns in the
plaque regions by analyzing the relation between
gray-level values appearing along pixel sequences. For
a given plaque region, each feature for a certain pixel
was extracted based on the element of GLRLM. From
the vertical and horizontal directions, a total of 11
GLRLM features comprising short run emphasis, long
run emphasis, gray-level non-uniformity, run-length
non-uniformity, run percentage, low gray-level run
emphasis, high gray-level run emphasis, short run low
gray-level emphasis, short run high gray-level em-
phasis, long run low gray-level emphasis, and long
run high gray-level emphasis were extracted and aver-
aged in each pixel. Detailed descriptions and equa-
tions are referred to in [21, 22].

Neighborhood gray-tone difference matrix (NGTDM)
NGTDM features reflect the spatial changes in intensity
between the gray level of a certain pixel and the average
of its neighborhood gray levels. This matrix converts the
original 2D images into a column matrix by averaging
the differences between the gray level of the center pixel
and that of the surrounding neighbors. In this study, five
features were obtained from a column matrix: coarse-
ness, contrast, busyness, complexity, and texture
strength [43]. The features are referred to in detail in
[24, 44, 45].

Law’s texture energy (LTE)
LTE is known involves energy-based texture feature and
computes the amount of variation within a 5 × 5 convo-
lution kernel. LTE features can be obtained through four
simple vectors of L5 (Level), E5 (Edge), S5 (Spot), and
R5 (Ripple) [46]. Four coefficients were multiplied in
order to form 2D kernels (L5E5/E5L5, L5S5/S5 L5,
L5R5/R5L5, E5S5/S5E5, E5R5/R5E5, R5S5/S5R5, S5S5,
E5E5, and R5R5), and these kernels were convolved with
the input images. Each kernel formed from orthogonal
matrices, such as L5S5 and S5 L5, were subsequently av-
eraged in order to reflect rotational invariance [24]. In
this paper, the sum of the squared value and the sum of
the absolute value [46] of the image were computed for
all convolution kernels. Consequently, a total of 18 fea-
tures were extracted from LTE maps.

Local binary pattern (LBP)
LBP is a non-parametric measure used to efficiently
characterize the local structures by allocating a binary
number to the circularly symmetric neighborhoods of
the center pixel [47]. LBP compares the intensity of the
central pixel with the intensities of the surrounding
pixels. The neighboring pixels are then thresholded with
a central pixel value and the results are regarded as a
binary number. In our experiments, the three LBP fea-
tures of Rotation Invariant, Uniform Rotation Invariant,
and Local Variance were extracted. The features are re-
ferred to in detail in [3, 22].

Feature selection
Not all of the image-based features are helpful for tissue
characterization, and some may negatively influence the
classification results [48, 49]. In order to reduce the di-
mensionalities and select optimum feature sets, principal
component analysis (PCA) was implemented followed by
a varimax rotation. PCA is a statistical method that con-
verts a set of the original features into a set of values of
linearly uncorrelated variables called principal compo-
nents. The selected feature sets reduce the computa-
tional load while not actually degrading the classification
performance, owing to the linear combinations. The pri-
mary principal component represents the direction in
which the features vary most, and the second compo-
nent describes the next largest amount of variance which
is not related to the primary one. Hence, it is possible to
condense most of the useful information into the first
few components. In this study, the first principal compo-
nent was used to select optimum features, and the classi-
fication accuracies were then quantitatively evaluated.

DC characterization using deep belief network (DBN)
A deep neural network initialized by a DBN was imple-
mented as a classification model for DC characterization.
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The basic concept of DBN is to use a layer-wise un-
supervised learning method in order to pre-train the
initial weight values of the network [50]. The DBN
model is a generative graphical model that can learn
to probabilistically reconstruct the inputs; it is com-
posed of multiple layers of latent variables with con-
nections between the layers but not between units
within each layer [51].
The training of the DBN model was carried out in two

steps: pre-training and supervised fine-tuning. First, each
pair of layers in the network was pre-trained using a re-
stricted Boltzmann machine (RBM). RBM is a generative
stochastic and two-layered neural network where only
inter-layer connections are allowed. This model is able
to learn a probability distribution over its inputs [52].
The main advantage of the RBM is that the hidden units
are conditionally independent, because there are no con-
nections within any layers. At the beginning of learning,
the weights were initialized to values sampled from a
Gaussian distribution with mean 0 and a standard devi-
ation of about 0.01. The visible and hidden biases were
initialized to 0 and standard deviation of 0.01. The learn-
ing was performed with a batch size of 100 samples and
was completed over 10 epochs. Detailed descriptions of
RBM are referred to in [53, 54].
Following the unsupervised training of RBM, the clas-

sifier was refined using the standard supervised feed-
forward neural network (FFNN). The output weights of
the DBN were transferred to a multi-layer FFNN with
the same number of input, hidden, and output neurons,
and the values were fine-tuned using the back-
propagation method. The rectified linear and softmax
units were used as activation functions of the hidden
and output layers, respectively. The dropout fraction was
set to 0.5 during the training process. Using back-
propagation that was initially learned as a generative sto-
chastic model led to much better performance than
using back-propagation with randomly initiated weights
in the traditional neural network. The random forest
(RF), Adaboost, support vector machine (SVM), FFNN,
and radial basis function neural network (RBFNN) were
used to evaluate the performance superiority of the pro-
posed method.

Performance evaluation
The proposed method was evaluated using the 10-fold
cross validation in order to avoid the influences which
were attributable to similar tissue characteristics of the
same pullback images. The selected features were
divided into ten independent sub-samples followed by
each pullback and one of these groups was used to test
other sub-sample groups while the others were used as
training sets. This process was repeated ten times so that
all pullbacks are used as both training and test sets. For

training and testing the network, VH-IVUS images were
used as the ground truth data.
For each iteration, the classification performance was

quantitatively evaluated in terms of specificity, sensitiv-
ity, positive predictive value (PPV), negative predictive
value (NPV), and accuracy. The classification results
were also validated through receiver operating character-
istic (ROC) analysis. The ROC curve demonstrates the
statistical correlations between the sensitivity and the
specificity based on the varying thresholds. The area
under the ROC curve (AUC) was computed for each it-
eration. All image processing including feature extrac-
tion, selection, training and testing the neural network
was performed using MATLAB software package
(R2015b, MathWorks Inc., Natick, MA, USA) on a NVI-
DIA GeForce GTX 1080 Ti GPU with 64 GB of RAM.

Statistical analysis
We performed a student’s t-test to evaluate the statis-
tical significance between ground truth data and pre-
dicted result. Data were described as the means±
standard deviations (SD). P values less than 0.05 were
considered statistically significant. All statistical analyses
were performed using the SPSS Statistics 17.0 (SPSS
Inc., Chicago, IL, USA) software.

Results
Feature selection using PCA
A total of 66 textural sub-features were extracted from
the eight feature sets of FOS, intensity, GDF, GLCM,
GLRLM, NGTDM, LTE and LBP. These were then opti-
mized using the PCA method and only 33 features were
obtained, as listed in Table 1. Mean and variance were
selected from FOS group, and 14 features remained from
19 GLCM features. For GLRLM and LTE, only sub-
features 4 and 11 were survived, respectively. Addition-
ally, the intensity and fractal dimension, which plays an
important role in DC characterization, were determined
to be the optimum feature set. On the other hand, the
textural features of GDF, NGTDM, and LBP were all ex-
cluded. The selected feature set was utilized as input for
DBN, and the classifier categorized each pixel into either
calcified or non-calcified tissues.

DC characterization results
Although there were some improvements in NPV and
sensitivity, the results showed no significant differences
in any evaluation metrics with or without the PCA
method (p > 0.05). This result indicates that the dimen-
sionality of the feature set was efficiently decreased with-
out remarkable performance degradation. Table 2
demonstrates the DC characterization results of the pro-
posed method in terms of PPV, NPV, sensitivity, specifi-
city, accuracy, and AUC, without and with PCA method.
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For varying window sizes, the condition of 3 × 3 mask
size not only had the poorest sensitivity and accuracy,
but also showed isolated regions as shown in Fig. 5. On
the other hand, the 5 × 5 and 7 × 7 window sizes pre-
sented similar classification results, and the sensitivity
drastically decreased by nearly 10% as the size increased
afterwards (Table 3). Based on these results, it was found

that the window size can largely influence the classifica-
tion results and that the 5 × 5 window size was the best
for plaque characterization. The DC characterization re-
sults are shown in Fig. 6. The predicted classification
maps agreed favorably with the VH-IVUS counterparts.

Comparison with other existing classification models
In order to evaluate the performance superiority of the
DBN classifier, the classification results of RF, Adaboost,
SVM, FFNN, and RBFNN were quantitatively compared
in terms of all evaluation metrics. All classification
models revealed a very small accuracy difference within
2% compared to the DBN model (p > 0.05). Although
the conventional machine learning approaches, such as
RF, Adaboost, and SVM, slightly improved the specificity
and accuracy, the sensitivity was decreased by over 4%
(p < 0.05). FFNN had lower values of specificity and ac-
curacy than the proposed method, whereas the superior
DC classification results were obtained as the sensitivity
was improved by about 2.4%. The RBFNN model re-
vealed the lowest sensitivity for all employed classifiers.
According to these results, it was confirmed that the op-
timized feature set of the proposed method was properly
determined using the PCA method. Table 4 shows the
DC characterization results for different classification
methods.

Discussion
None of GDF, NGTDM, and LBP features were selected
during feature selection using the PCA method. GDF is
an indicator that presents the relative position of DC tis-
sues in the plaque region. In their previous study [1],
Athanasiou et al. reported that geometrical features
could improve the classification accuracy at 2.35%. Des-
pite this improvement, one of the possible reasons for
exclusion is an inaccurate MA border caused by acoustic
shadow. It is considered that GDF2 and GDF3 showed
low significance levels, because these features were influ-
enced by the border locations. Typically, coronary arter-
ies are highly prone to rupture when more DC tissues
are distributed close to the intima border. Some studies
have reported that the location of each tissue from the
vessel lumen is a useful index for discriminating DC
tissues [9, 55]. Although it was validated with optical co-
herence tomogram (OCT), which can measure the thick-
ness of the fibrous cap, it is quite possible to apply in
IVUS images as well. Therefore, further studies are
needed to determine the applicability. NGTDM and LBP
were considered as excellent indicators for expressing
textural patterns of the image [2, 3, 21, 43–45]. How-
ever, these descriptors not only present only a small
change in the output when the change is small in the in-
put image, but are also not robust for noisy images [56].
This is due to the thresholding scheme of the operator.

Table 1 Selected feature subsets from the original features
using PCA method. Only 33 features were selected as the best
feature set for DC characterization and these were used as the
input for classification model (FOS: first order statistics, FD:
fractal dimension, GLCM: gray level co-occurrence matrix,
GLRLM: gray level run length matrix, and LTE: Law’s texture
energy)

No. Feature Group Feature Subsets

1 FOS Mean

2 Variance

3 Intensity Intensity

4 FD Fractal Dimension

5 GLCM Difference Variance

6 Contrast

7 Sum Variance

8 Autocorrelation

9 Cluster Prominence

10 Sum of Squares

11 Sum Average

12 Entropy

13 Energy

14 Homogeneity

15 Maximum Probability

16 Sum Entropy

17 Dissimilarity

18 Difference Entropy

19 GLRLM SRE

20 LRE

21 GLN

22 HGRE

23 LTE (SSV) R5S5/S5R5

24 (SSV) E5E5

25 (SSV) E5S5/S5E5

26 (SSV) E5R5/R5E5

27 (SSV) S5S5

28 (SSV) R5R5

29 (SAV) R5S5/S5R5

30 (SAV) S5S5

31 (SAV) R5R5

32 (SAV) E5R5/R5E5

33 (SAV) L5S5/S5 L5
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Unlike OCT images, IVUS images has numerous speckle
noises and small changes of values because of pixel-to-
pixel relations. These inherent characteristics resulted in
low significances.
Although the PCA method slightly improved classifi-

cation performance, there was no drastic improvement
for DC characterization. However, the main reason for
using feature selection is to reduce the feature dimen-
sionality rather than improve the classification accuracy.
The proposed method not only reduced the feature di-
mensionality over 50%, but also slightly improved the
sensitivity level simultaneously. The selected features re-
vealed similar classification results for 10-fold cross val-
idation, and we found a significant reliability for these
textural features. With regard to the window size, the
size of 3 × 3 showed the lowest sensitivity, because this
mask includes a relatively small number of image pixels.
The excessive large window conditions over 9 × 9 size
also had poor classification results and this was notice-
ably shown in the regions where the small DC tissues
are isolated. Small windows are able to preserve detailed

information and avoid the influences of adjacent pixels
(tissues) but may include limited data for determining
tissue type. On the other hand, large windows tend to
result in misleading texture information, particularly for
border regions. The window sizes of 5 × 5 and 7 × 7
showed similar levels of classification. However, the con-
dition of 5 × 5 was selected as the optimum mask condi-
tion, since this condition is advantageous over other
conditions in terms of computational load.
This study implemented the DBN model for discrim-

inating DC tissues and compared the classification re-
sults with various classifiers including RF, Adaboost,
SVM, FFNN, and RBFNN, under the same feature sets.
Consequently, the conventional models of RF, Adaboost,
and SVM revealed over 87% of sensitivity, while the
FFNN representing typical aspects of neural network
showed the highest sensitivity (94.22%). These results in-
dicate that the feature selection was carried out quite
successfully. Nevertheless, we implemented the DBN
model in order to cope with larger data sets and pre-
serve the fastest processing speed. The DBN model has
four main advantages: (1) it is fine-tunable, (2) it is gen-
eratively pre-trainable, (3) includes many hidden layers,
and (4) allows for dimensionality reduction for input fea-
tures [57]. For 3 to 5 million pixels, most existing classi-
fiers may produce reliable results. However, the
traditional models are difficult to be trained with exces-
sively large datasets due to the vanishing gradient, over-
fitting, and excessive computational load. Among the
existing methods, it is worth analyzing the applicability
of the convolutional neural network (CNN). The CNN
model classifies on the basis of pre-determined masks
without any feature extraction process. The CNN model
was not considered in this study, because it is not able
to reflect the inherent tissue properties in medical im-
ages. However, if the clinical, textural, and CNN proper-
ties are combined and utilized as input features, it may
improve the classification performance drastically.
In our previous study in [32], the DC and correspond-

ing acoustic shadow regions were automatically detected
from the gray-scale IVUS images using only the dual-
threshold-based segmentation without any specific clas-
sification model. Despite the significant similarities, the

Table 2 DC characterization results in terms of PPV, NPV, sensitivity, specificity, accuracy and AUC without and with PCA method. P-
value was obtained using student’s t-test between ground truth data and predicted results (PPV: positive predictive value, NPV:
negative predictive value, and AUC: area under the ROC curve)

Mask Size PPV (%) NPV (%) Sensitivity (%) Specificity (%) Accuracy (%) AUC

3 × 3 86.7 ± 0.1 82.5 ± 0.1 81.6 ± 0.1 87.3 ± 0.1 84.5 ± 0.1 0.846 ± 0.002

7 × 7 85.4 ± 0.1 91.8 ± 0.1 92.5 ± 0.1 84.1 ± 0.1 88.3 ± 0.1 0.886 ± 0.001

9 × 9 89.1 ± 0.1 84.0 ± 0.1 82.9 ± 0.1 89.8 ± 0.1 86.3 ± 0.1 0.865 ± 0.001

11 × 11 87.1 ± 0.1 87.4 ± 0.1 87.6 ± 0.1 87.0 ± 0.1 87.3 ± 0.1 0.873 ± 0.001

5 × 5 86.0 ± 0.1† 91.2 ± 0.1*†ψ 92.8 ± 0.1*†ψ 85.1 ± 0.1 88.4 ± 0.1*† 0.886 ± 0.001*†

Fig. 5 The isolated small DC regions which showed the poorest
classification results
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output regions contained a substantial part of NC tissue
(28.4%), since the NC frequently accompanies acoustic
shadows. This result indicates that the sole intensity in-
formation cannot be a good indicator for the DC classifi-
cation, although the DC tissues have visually distinct
intensity characteristics. In order to solve this problem,
this study designated these regions as the DC candidate
and classified each pixel to calcified or non-calcified

tissues by analyzing the textural feature patterns. As a
consequence, the proposed method improved the sensi-
tivity up to 92.8% and all of the remaining (7.2%)
belonged to the NC group. The reason for the mislead-
ing of NC tissues comes from the fact that some parts of
NC tissues have overlapped intensity ranges with DC tis-
sues (Fig. 4). It is necessary to perform the RF-based
analyses, such as wavelet analysis, rather than the image-

Table 3 Classification results according to the different window sizes of 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11. The condition of 3 × 3
mask size had the worst results, while the condition of 5 × 5 provided the best results. This result indicates that the mask size can
largely influence the classification performance. Statistically significant differences (p < 0.05) compared with ‘3 × 3’, ‘7 × 7’, ‘9 × 9’, and
‘11 × 11’ are indicated by ‘*’, ‘γ’, ‘†’, and ‘ψ’, respectively, as determined from the student’s t-test

Mask Size PPV (%) NPV (%) Sensitivity (%) Specificity (%) Accuracy (%) AUC

3 × 3 86.7 ± 0.1 82.5 ± 0.1 81.6 ± 0.1 87.3 ± 0.1 84.5 ± 0.1 0.846 ± 0.002

7 × 7 85.4 ± 0.1 91.8 ± 0.1 92.5 ± 0.1 84.1 ± 0.1 88.3 ± 0.1 0.886 ± 0.001

9 × 9 89.1 ± 0.1 84.0 ± 0.1 82.9 ± 0.1 89.8 ± 0.1 86.3 ± 0.1 0.865 ± 0.001

11 × 11 87.1 ± 0.1 87.4 ± 0.1 87.6 ± 0.1 87.0 ± 0.1 87.3 ± 0.1 0.873 ± 0.001

5 × 5 86.0 ± 0.1† 91.2 ± 0.1*†ψ 92.8 ± 0.1*†ψ 85.1 ± 0.1 88.4 ± 0.1*† 0.886 ± 0.001*†

Fig. 6 Classification results mapped to (x, y) view. Panels show: (left) original image, (middle) corresponding VH-IVUS, and (right) predicted result.
Colors are green (fibrous tissue), light green (fibro-fatty tissue), red (necrotic core), and white (dense calcium)
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based analysis in order to improve the classification
accuracy.
With our fully-automated method, one can run the entire

pullback or manually set the start and end frames, and then
review results. The proposed method also has high clinical
applicability in terms of computational time. On our com-
puter system with non-optimized code, the total amount of
time necessary to perform the whole process from the lumen
segmentation to DC classification was around 0.7 s (0.1 s for
lumen segmentation, 0.1 s for determining DC candidates,
0.5 s for feature extraction, and 0.02 s for classification). Con-
sidering that each pullback usually includes 100–200 frames,
the proposed method can complete the entire DC
characterization within 70–140 s.
This study has three main limitations: First, the pro-

posed method was still not able to perfectly discriminate
DC tissues from NC tissues, despite the relatively high
sensitivity. Second, the VH-IVUS was regarded as the
ground truth. As previously reported in [5], VH-IVUS
shows a reliable classification accuracy of over 93% for
cardiovascular tissues. However, it may potentially cause
misleading results, since VH-IVUS still has minor errors.
Third, it is difficult to quantify the amount of DC tissues
due to the high reflectance of ultrasound signal, giving
indeterminate pixels in an image.

Conclusions
This study proposed a fully automated classification
method for DC tissues in the gray-scale IVUS images.
We determined the best feature set and window size for
DC characterization. The proposed method had signifi-
cantly high levels of sensitivity, accuracy, and AUC.
DBN model offered better characterization performance
than other traditional models. Experimental results con-
firmed that the proposed method has high clinical ap-
plicability for IVUS-based cardiovascular diagnosis.
Particularly, our method only required about 0.7 s per
image for DC characterization, indicating that it only
takes few minutes for the entire pullback. These advan-
tages would enable the cardiologists to expedite the
interventional decision making. Future research should

include histopathological experiments to automatically
classify FT, FFT, NC, and DC in the plaque regions.
Moreover, the feasibility of combined features of IVUS
and OCT images for tissue characterization should be
assessed.
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