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Abstract

Background: Left ventricular mass (LVM) is an independent risk factor for the prediction of cardiac events. Its
assessment is a clinically important diagnostic procedure in cardiology and may be performed by Computed
Tomography (CT). The aim of this study was to assess the correlation between the cardiac left ventricular shell
volume (LVShV) determined by postmortem Computed Tomography (PMCT) and the anatomic LVM obtained at
autopsy and to calculate the myocardial tissue density.

Methods: A total of 109 deceased individuals were examined with a 64-slice CT scanner and LVShV was
determined. At autopsy, the left ventricle was dissected and weighted. The correlation between LVShV and the
anatomic LVM was analysed. Asymmetric left ventricular (LV) hypertrophy was recorded. Inter-observer variability
was evaluated, and a density value for myocardial tissue was calculated.

Results: The mean age of the deceased was 55 ± 16 years, and 58% was men. We found 30 cases of asymmetric LV
hypertrophy. A highly positive correlation existed between LVShV and anatomic LVM (r = 0.857; p < 0.0001),
regardless of hypertrophy, asymmetric hypertrophy and gender. The mean difference in the inter-observer
variability for LVShV assessment was - 4.4 ml (95% CI: -26.4; 17.6). A linear regression analysis was performed,
resulting in a value of 1.265 g/ml for myocardial tissue density. Applying the hitherto used myocardial tissue density
of 1.055 g/ml underestimated the anatomic LVM by 18.1% (p < 0.0001).

Conclusion: PMCT is a helpful tool for the assessment of LVM, and LVShV is highly correlated with LVM as assessed
by subsequent autopsy. The correlation between the two was independent of gender, hypertrophy and LV
asymmetric hypertrophy. We found a higher myocardial tissue density of 1.265 g/ml compared to previous studies.
We show that PMCT combined with autopsy may contribute not only to anatomical but also clinical knowledge.

Keywords: Left Ventricular Shell Volume, Left Ventricular Mass, Anatomic Left Ventricular Mass, Computed
Tomography, Left Ventricular Mass, Myocardial Tissue Density, Post Mortem Computed Tomography

Background
Left ventricular mass (LVM) is a prognostic factor in
cardiac disease [1], and thus, assessment of LVM is used
in the diagnosis and risk stratification of patients in clin-
ical practice [2]. In addition, abnormal patterns of left
ventricular (LV) size and shape have been found to have
prognostic relevance [3–5]. Hypertrophy may occur in a

specific region of the LV, asymmetric hypertrophy, re-
gardless of the overall heart size [6, 7]. The most wide-
spread tool for non-invasive measurements of the LVM
is echocardiography [4, 7]. LVM determination by differ-
ent imaging modalities is based on the LV shell volume
(LVShV), which is the difference between the epicardial
and endocardial volumes [4, 8]. The LVShV is subse-
quently converted to mass by multiplying it with the dens-
ity of myocardial tissue [8, 9]. The clinically accepted
value of myocardial tissue density is 1.055 g/ml [9–14];
however, there are different published values [6, 8, 15–22],
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cf. Table 1. LVM has been calculated based on Computed
Tomography (CT)-angiography [10], magnetic resonance
imaging (MRI) [23] and echocardiography [24], but the myo-
cardial density has not been validated. The aim of this study
was to assess the association between the LVShV determined
by postmortem Computed Tomography (PMCT) and the
anatomic LVM obtained at autopsy, and to calculate the
myocardial tissue density.

Methods
Study population and design
The study population is part of a prospective nationwide
autopsy-based Danish forensic study, SURVIVE-let the
dead help the living, which focuses on deceased with
mental illness [25]. The deceased were autopsied at the
Section of Forensic Pathology at the Institute of Forensic
Medicine, University of Copenhagen over an
eleven-month period, from January 2014 to November
2014. The study group comprised 116 deceased that fulfilled
the following inclusion criteria: individuals with a known or
a suspected mental illness, and the intake of antipsychotic,
antidepressive or anti-anxiety medication or a suspicion
thereof. The exclusion criteria were putrefaction, suspicion
of a criminal act, inadequate CT image quality for the ana-
lysis and failure to scan due to severe obesity. This led to the
exclusion of seven individuals. After a medical inquest, the de-
ceased underwent a whole-body PMCT. The scans occurred
within 24 h prior to autopsy. At the autopsy (see details
below), the sex, age, weight and height of the deceased were
recorded, as were the size, shape and macroscopic changes of
the heart. The project was approved by the Danish National
Committee on Health Research Ethics (1377517).

Post mortem CT imaging protocol
Non-contrast PMCT imaging was performed using a
64-slice Multi Detector Computed Tomography scanner
(MDCT) (Siemens Somatom definition syngo 2010A; Sie-
mens medical solutions, Forchheim, Germany). The follow-
ing scanning parameters were used: tube current time: 300
mAs, tube voltage: 120 kV, slice collimation: 32 × 0.6mm
and slice acquisition: 64 × 0.6mm. The iterative recon-
structed slice thickness was 1.5mm using a soft tissue con-
volution kernel. All images were acquired with the deceased
wrapped in an artefact-free body bag in a supine position
with elevated arms (except for one due to a BMI of 50). The
bodies were placed in the CT gantry and scanned from head
to toe. After reconstruction of the raw data, the images were
transferred to the local PACS server.

Imaging analysis
Assessment of the myocardial tissue was performed with
commercial software (Vitrea 6.3, Vital Images, Inc., MN,
USA). Imaging analysis was performed by individuals who
were blinded to the autopsy results. The non-contrast
PMCT data were reviewed in multiplanar reconstructions
after adjusting the planes to a long-axis view of the heart.
The LV myocardial tissue was segmented by manually tra-
cing the endocardial and epicardial border for each long-axis
slice and adding up the corresponding volumes from each
slice (Fig. 1). We used normal cardiac window settings with
a level = 200 Hounsfield Units (HUs) and width = 1000. Vox-
els corresponding to myocardial tissue were identified using
mean threshold attenuation values of 50 ± 10 HUs to distin-
guish it from the LV blood pool (Fig. 1). The region of inter-
est (ROI) for the segmentation of both LV myocardial tissue

Table 1 Previous studies investigating the myocardial tissue density or correlation between an image modality and the LVM

Studies describing the myocardial tissue density or myocardial tissue gravity

Reference Year Material Method Number included Density/gravity Correlation, r

Friedmann C [21] 1951 Cadaver human hearts Submersion in water 45 1.029

Masshoff W [14] 1967 Cadaver human hearts Submersion in water 23 1.055

Webb A [35] 1979 Equine hearts Archimedes principle 18 1.033

Schapira JN [36] 1981 Canine hearts Phased array sector scan 15 1.04

Rufeng B [20] 2007 Cadaver human hearts Density Instrument 169 1.3, 0.9

Studies referring to a myocardial tissue density factor based on previous studies

Snyder [18] 1975 Human hearts Radiology – 1.033

Wyatt A [31] 1979 Canine hearts Echocardiography 21 1.05 0.94, 0.92

Reicheck [17] 1981 Cadaver human hearts Echocardiography, ekg 34 1.04

Schiller [29] 1983 Canine Echocardiography 10 1.055 0.98

Deveraux [12] 1986 Cadaver human hearts Echocardiography 55 1.04 0.92

Manning J [30] 1990 Rat hearts MRI 28 1.055 0.98

Jackowski C [13] 2004 Cadaver MRI, CT-angio 80 1.05

Lang [8] 2005 Living Echocardiography 85 1.04

Fuchs A [10] 2016 Living CT-angiography 569 1.055
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and the LV blood pool was defined at the height of the
septum and the LV outlet by HUs. The ROI was set at a
minimum of 1 cm2. Depending on the heart size, the num-
ber of manually traced slices varied from 70 to 100 in each
case. Finally, based on the segmentation, the LVShV was cal-
culated in millilitres and converted to mass, by multiplying it
with 1.055 g/ml. Inter-observer variability was assessed in 25
randomly chosen individuals. Fifteen randomly chosen LV
myocardial tissues were re-analysed using a different cardiac
setting with level = 45 HU and width = 50 HU.

LV autopsy procedure
The autopsies were performed in accordance with the
extended autopsy protocol of the SURVIVE study and
the departments guidelines and were accredited by the
Danish accreditation fund (DANAK). The length of the
corpses were measured in the supine position from the
top of the head (vertex) to the heel using an inelastic
measuring tape. The heart was removed during the aut-
opsy by preserving an adequate extension of the base
and pulmonary vessels and dissected according to inter-
national standards detailed by Basso et al. [26]. After the
removal of clotted blood, the whole heart was weighed.
Dissection of the left ventricle was performed according
to the method described by Bove et al. [27] with modifi-
cations; an incision was made in the posterior part of
the left atrium following the atrioventricular groove to
remove the atria from the ventricles. The ventricles were
cut into transverse slices (short-axis direction). The right
ventricle was separated from the septum and the left
ventricle. The trabeculae encrusted in the septum and

papillary muscles were preserved, and the hearts valves
were removed. The epicardial fat was resected. The LV
slices were blotted dry and separately weighed using an
electronic scale (Mettler Toledo, ICS425, Glostrup,
Denmark) with a 1-g precision.
The heart was recorded as being hypertrophic according

to international forensic pathology standards and charts [28].
Anterior, lateral, posterior and septal wall thicknesses were
measured at the level of the midventricular transversal slice.
Papillary muscles were excluded from this measurement.
Asymmetric LV hypertrophy was defined as biggest heart
wall (millimetres) > 1.3*thinnest heart wall (millimetres) [7].

Statistical analyses
Data analysis was performed using the SPSS statistical soft-
ware package (IBM Corp. IBM SPSS Statistics for Windows,
Version 24, USA). Data was presented as the mean± stand-
ard deviation, and a p-value of < 0.05 was considered statisti-
cally significant. Data distribution was tested with the
Ancova/ linear regression test. Bland-Altman analysis was
used to assess the re-analysis of LVShV and the degree of
inter-observer variability. Scatterplots were used to illustrate
the level of agreement and linearity between the CT obtained
LVShV and the anatomic LVM as well as asymmetric LV
hypertrophy. The degree of correlation was determined by
Pearson’s correlation coefficient. The association between the
CT-obtained LVShV and the anatomic LVM, with and with-
out adjustment for gender, was assessed by linear regression
analysis. A density factor was calculated by linear regression
analyses, forcing the slope through origo (as done in compar-
able studies) [7, 8].

Fig. 1 Long-axis wiev of the heart, illustrating the myocardial tissue (1) and the LV blood pool (2). The orange- and blue line indicates the
epicardial and endocardial contours, respectively
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Results
Data were collected from a total study population of 109
deceased, comprising 46 females (42%) and 63 males
(58%). The age and body weight distributions are de-
tailed in Table 2. The deceased were autopsied at a mean
time (± 1 SD) of 44 ± 16 h (range 29–150 h) after the
declaration of death.

Left ventricular mass and LVShV
The results for anatomic LVM, LV wall thickness and
LVShV are given in Table 2. There were 36 hypertrophic
hearts, (25 men and 11 women) based on total heart
weight. Thirty cases had asymmetric LV hypertrophy (19
men and 11 women) of which thirteen had hypertrophic
hearts (total weight).

Table 2 Study group data, autopsy measurements and LVShV obtained by CT

Women Men

Mean 1 SD Range Mean 1 SD Range

Age 59 18 21–94 52 14 22–79

Body weight, kg 67 67.4 38–130 79 15 54–120

Anatomic LVM, g 163 35 96–277 217 50 140–326

Anterior wall thickness, mm 13 3 9–18 13 3 8–20

Lateral wall thickness, mm 13 4 8–20 14 3 9–20

Posterior wall thickness, mm 13 4 9–25 13 3 9–18

Septal thickness, mm 14 3 9–20 14 4 8–21

Total heart weight, g 354 77 231–582 459 104 302–812

LVShV, ml 126.4 30.7 77–218 168.9 43.5 101–282

Descriptive data for study group and anatomic measures and CT determined LVShV (LVM, left ventricular mass; g, grams; mm, millimeters; kg, kilograms; LVShV,
LV Shell volume)

Fig. 2 Correlation between the CT determined LVShV and anatomic LVM (Pearson r = 0.874, p < 0.0001) stratified by the presence of asymmetric
LV hypertrophy (triangles)
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Overall, the CT-determined LVShV was highly correlated
with the anatomic LVM (Pearson r = 0.857, p < 0.0001), also
allowing us to assume linearity. Significant correlation was
also found when the cohort was stratified by the presence of
asymmetric LV hypertrophy (Fig. 2, Table 3) and by gender
(Table 3). The inter-observer mean difference in LVShV as-
sessment by CT was - 4.4ml (95% CI: -26.4; 17.6). The mean
HUs value of the ROI was 47 ± 7 in the segmentation of
myocardial tissue and 68 ± 13 in the LV blood pool. A linear
regression equation was calculated for each gender (Table 4)
and for the genders combined (Fig. 3, Table 4). Linear regres-
sion analyses were also performed by forcing the line of re-
gression through the origo for each gender (Table 4) and for
the genders combined (Fig. 3, Table 4). The differences be-
tween the models based on gender were negligible. Forcing
the line of regression through the origo resulted in the fol-
lowing estimated model: LVM=LVShV*1.265 g/ml, with
1.265 g/ml as the myocardial tissue density. The R2 values
and residual standard error are presented in Table 4. Hyper-
trophic hearts based on total heart weight did not alter the
myocardial tissue density compared to non-hypertrophic
hearts (data not shown). Using the hitherto clinically ac-
cepted myocardial tissue density of 1.055 g/ml, the anatomic
LVM was underestimated by 18.1% (95% CI = 29.9–40.0 g),
p < 0.0001, (Fig. 3, Table 5). The mean difference in LVShV
assessment by CT with the different settings in 15 randomly
chosen LV myocardial tissues was - 19.4ml (95% CI: -65.3;
25.5), p > 0.5.

Discussion
As expected, our data showed a highly positive correlation
between the CT-determined LVShV and the anatomic LVM;
also when stratifying by gender and when focusing on cases
with hypertrophy and asymmetric LV hypertrophy. We then

performed linear regression analyses with LVShV as the ex-
planatory variable and LVM as the dependent variable.
Stratification by gender showed no differences. Potentially,
the resultant regression equation (genders combined) could
thus be used for calculating LVM when LVShV has been de-
termined. Traditionally, clinical volume-to-mass calculations
use only a density factor, i.e. the volume is simply multiplied
by a density factor [8, 9]. This is in line with a theoretical ap-
proach to a density factor: zero volume equals zero mass. Earl-
ier attempts at establishing a myocardial density factor have
therefore, more or less explicitly, assumed that a volume-to-
mass regression must go through origo [7, 12, 24], hence
resulting in a simple factor, and not in a regression equation
with both a factor and a constant. We therefore performed
new linear regression analyses, but this time forcing the line of
regression through the origo. Again, differences by gender
were negligible, thus allowing us to propose the resultant slope
for the combined genders, 1.265 g/ml, as the myocardial tissue
density. This density value is based on CT-determined LVShV
and the actual weight of the anatomic LVM obtained at aut-
opsy. When we compared this new myocardial tissue density
value with the hitherto used value in the clinical setting of
1.055 g/ml (6–15), we found that the latter value significantly
underestimated the anatomic LVM.
Indeed, the assumed density of myocardial tissue has var-

ied over time, e.g., 1.029, 1.03, 1.04 and 1.055 g/ml, not least
because of differing techniques in determining the density,
e.g., by immersing cardiac muscle tissue or hearts in water
(Archimedes principle) [14, 20, 21], different image modal-
ities and different animal species [12, 17, 29–32] (cf. Table 1).
Echocardiography is the most widespread tool used for

the quantification of LVM [7, 8], CT- angiography is often
used for LVM calculations [10] and cardiac MRI is often
considered the gold standard for LVM assessment [23, 33].
Although not often used, non-contrast CT can also be used
for information in LV size in the clinical setting [34]. In this
large study of recently deceased individuals, we showed that
the use of non-contrast PMCT for the determination of
LVShV is a useful tool and has a satisfactory repeatability
due to the fact that a clear distinction between the HUs of
myocardial tissue and LV blood pool without active circula-
tion could be made. However, these CT settings were opti-
mized for contrast-based studies. Changing the CT settings
in 15 randomly chosen cases showed an overall, but

Table 3 Correlation between the CT determined LVShV and
anatomic LVM

n R value P value

Women 46 0.739 <0.0001

Men 63 0.836 <0.0001

All 109 0.857 <0.0001

Asymmetric LV hypertrophy 30 0.874 <0.0001

Correlation values by gender and asymmetric LV hypertrophy

Table 4 Linear regression for the LVM by LVShV

Linear Regression Equation R2 Residual SE Linear regression forced through origo Equation R2 Residual SE

Women 45.73 + 0.93057 g/ml * LVShV 0.9835 26.15 1.267 g/ml* LVShV 0.9792 29.25

Men 59.63 + 0.93057 g/ml * LVShV 0.9835 26.15 1.264 g/ml* LVShV 0.9792 29.25

All 42.36 + 1.0061 g/ml * LVShV 0.7331 26.73 1.265 g/ml* LVShV 0.9792 29.11

There was no significant difference between the slope of the genders, why a fitted model was used, 0.93057. A slightly different constant was seen due to the
LVM being bigger in men. There was no difference in the LVM calculating equation (LVShV * myocardial density), when the line of regression was forced through
the origo. Knowing the gender and not forcing the linear regression through the origo had the best fit. (LVM, left ventricular mass; g, grams; ml, milliliters; LVShV,
LV shell volume)
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negligible and non-significant (p > 0.5), decrease in LVShV
(mean difference − 19.4ml). We did find that the image
quality improved in some cases using these different set-
tings (n = 7/15), as a more clear-cut distinction between the
blood-pool and the myocardium was achieved. However, in
other cases a lot of noise was introduced, so we find that
the majority of the scans were in fact better analysed with
the original settings.
Several studies have presented normal reference values

for LVM based on CT-angiography [10, 11, 15], echocar-
diography [8, 24] and MRI [23, 33] and thus it is reason-
able to develop modality-specific reference values.
However, regardless of the imaging modality used to ob-
tain the LVShV, all shell volumes are converted to mass
by multiplying it with the myocardial tissue density [8],
with 1.055 g/ml being the most commonly used density.
To our knowledge, this study is the first to calculate the hu-
man myocardial density factor using non-contrast CT based

LVShV and LVM obtained at autopsy. This may explain why
our value differs from other proposed values. Since our value
is higher, this means that a given LVShV will result in a
higher LVM, and will be most pronounced for higher and
potentially pathological LVShV, which may be of interest for
clinicians and warrants further studies.
Although it is currently not fully accepted clinically to

use the LVM as a regular test for patients [3], the exact CT
measurements and accurate values for myocardial tissue
density can lead to important therapeutic opportunities
concerning diagnosis, treatment and prognostics. If the
hitherto used density value is substituted with our value,
this could have implications for the reference values as it
will move some patients to higher LVMs indicating abnor-
mal LVM. If one continues with the hitherto used density
value, there will be no problem in using the reference inter-
vals, but to the best of our knowledge, this would mean that
the recorded LVM is not the real LVM.

Fig. 3 Regression equations lines for LVM by LVShV. The lines are for genders combined (with the constant of 42.36). CT_vol represents the CT
determined LVShV and the autopsy mass represents the anatomic LVM. The plot also shows the underestimation of the anatomic LVM when
applying the clinically used myocardial tissue density of 1.055g/ml

Table 5 LVM calculated using different myocardial tissue density and the anatomic LVM

Women Men All

Mean 1 SD Range Mean 1 SD Range Mean 1SD Range

LVM, g (LVShV*1.055 g/ml) 133 32 81–230 178 46 107–298 159 46 81–298

LVM, g (LVShV*1.265 g/ml) 160 39 97–276 213 55 127–357 191 55 97–357

Anatomic LVM, g 163 35 96–277 217 50 140–326 194 51 96–326

Resultant LVM using the different equations, with comparison to the anatomic LVM (LVM, left ventricular mass; g, grams; ml, milliliters; LVShV, LV shell volume)
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Study limitations
The following study limitations need to be addressed. This
study included 73 non-hypertrophic hearts, but in order to
develop LVM reference values based on the density, a bigger
study population would be preferable. We did not take into
consideration the status of ischaemic heart disease, fat infil-
tration or LV fibrosis and how this potentially could affect
the size and shape of the left ventricle. The papillary muscles
were included in the LVShV measurements. However, the
impact of the inclusion or exclusion of papillary muscles on
the assessment of LV function is negligible [15]. The scans
were non-contrast scans, which in a clinical setting makes
the differentiation between the LV blood pool and the LV
myocardium difficult. However, non-contrast scans are pos-
sible in deceased individuals (cf. Fig. 1). We chose to perform
the present study without contrast to avoid extravasation of
contrast media in the examined deceased individuals and
thereby omit a possible weight effect on the myocardium.
A study by Bai R et al. [20] has suggested a tendency of

lower myocardial tissue density associated with pathological
changes as oedema, none of our included cases had under-
went putrefaction, as these were excluded. Therefore, we do
assume that post mortal changes did not have any impact on
the myocardial tissue density calculation. In vivo, the myo-
cardium consist of intra-myocardial blood-volume. Postmor-
tem, this volume may change, e.g., postmortem extravasation
or, conversely, fluid accumulation from leaking and decom-
posing endocardial structures. Such changes are small and
usually only become pronounced with extended postmortem
intervals [35]. The deceased individuals in this study were
kept at reduced temperature and autopsied rather quickly
after declaration of death. Morphological observations as
well as quantitative results suggest that elements of the blood
are resistant to autolytic effects [36]. Overall, this leads us to
assume that no significant organ volumetric changes took
place. Water displacement was not performed in this study.
There are several factors to take into consideration when
performing water displacement measurements/techniques
on cadaver hearts. Although it works accurately with solid
objects, biological tissue is by its nature permeable and may
be compressed or distended, and it may be fixed or unfixed.
Given that we wanted to investigate CT-derived volume
measures, as this is what is used clinically, we hence chose to
base our volumes on this method. Boundaries are sensitive
to threshold and windowing. We used a HU threshold for
myocardial tissue of 50 ± 10, and 1mm slice thickness for
CT evaluations. The CT settings used for this study are opti-
mized for contrast-based studies, and a different cardiac win-
dow settings could result in different myocardial volume.
Also, different thresholds may apply for epicardial and endo-
cardial borders and partial volume effects may be important.
Due to the relatively close HU values of the blood pool and
the myocardium, the myocardium may have been overesti-
mated in some cases and underestimated in other cases.

Finally, our calculation of a new value for myocardial
density is made performing a linear regression on the
LVM and LVShV values of our study population. Thus,
theoretically, we cannot be sure that very small hearts or
LV masses below 96 g will conform to the linear model.
This can probably only be investigated by also applying
our method to a subadult study population. However, we
note that all other analyses on myocardial tissue density
were also constrained or even more limited. We would
also note that when comparing with the hitherto-used
value for myocardial density the differences are most
pronounced for bigger hearts, so even if our new value
has not been tested on very small hearts, any differences
might be assumed minor.

Conclusion
The unique access to both PMCT scans and autopsy mea-
surements allowed us to assess the correlation between
LVShV and the anatomic LVM; the analysis was also possible
based on gender and LV asymmetric hypertrophy. Our re-
gression models determined only very small differences
when stratified by gender and negligible differences when
forcing the regression through the origo, which allowed us
to determine a myocardial density at 1.265 g/ml. Applying
the hitherto used myocardial tissue density value (1.055 g/
ml) significantly underestimated the LVM. Our proposed
new value is the result of post-mortem CT for volume deter-
mination, followed by post-mortem dissection for obtaining
LV weight. We argue that this allows for a more precise de-
termination of these two basic parameters, but obviously, we
are aware that post-mortem anatomy may not be directly
translational to clinical studies. Several LVM reference value
tables have been produced using myocardial tissue density
value of 1.055 g/ml, thus continuing to use this value when
converting from LVShV to LVM will not have immediate
clinical implications. However, we do think that our study
calls for critical evaluation of especially high LVMs and how
this value is obtained.
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