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Automatic brain tissue segmentation based
on graph filter
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Abstract

Background: Accurate segmentation of brain tissues from magnetic resonance imaging (MRI) is of significant
importance in clinical applications and neuroscience research. Accurate segmentation is challenging due to the
tissue heterogeneity, which is caused by noise, bias filed and partial volume effects.

Methods: To overcome this limitation, this paper presents a novel algorithm for brain tissue segmentation based
on supervoxel and graph filter. Firstly, an effective supervoxel method is employed to generate effective supervoxels
for the 3D MRI image. Secondly, the supervoxels are classified into different types of tissues based on filtering of graph
signals.

Results: The performance is evaluated on the BrainWeb 18 dataset and the Internet Brain Segmentation Repository
(IBSR) 18 dataset. The proposed method achieves mean dice similarity coefficient (DSC) of 0.94, 0.92 and 0.90 for the
segmentation of white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) for BrainWeb 18 dataset, and mean
DSC of 0.85, 0.87 and 0.57 for the segmentation of WM, GM and CSF for IBSR18 dataset.

Conclusions: The proposed approach can well discriminate different types of brain tissues from the brain MRI image,
which has high potential to be applied for clinical applications.
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Background
Magnetic resonance imaging (MRI) has been widely
employed to examine the anatomical structures of the
human brain in both clinical application and neurosci-
ence research [1, 2]. Compared to other medical imaging
modalities, MRI has the advantage of the high spatial
resolution and well soft-tissue contrasts [3, 4]. This
powerful technique can yield exquisite differentiation
between different types of tissues, including white matter
(WM), grey matter (GM) and cerebrospinal fluid (CSF).
Accurate segmentation of these tissues is of significant
importance in the several applications [5–7]. Manual
segmentation is extremely time-consuming due to
millions of voxels in the brain MRI image. Besides, the
segmentation result is prone to substantial intra-
observer and inter-observer variation. Therefore, it is

essential to propose an effective approach for automatic
and accurate segmentation of brain tissues from the
MRI image.
Accurate segmentation can be challenging due to the

tissue heterogeneity, which is caused by noise, bias filed
and partial volume effects in brain MRI [8, 9]. To over-
come these issues, great deals of efforts have been made
to propose a number of approaches for brain tissue
segmentation in the past two decades. These methods
can be mainly categorized into three main-streams, i.e.
level set methods [10], classification approaches [11–13]
and atlas based methods [14]. The level set methods in
natural images are extent to the brain tissue segmenta-
tion, which are sensitive to user initialization and param-
eter settings [10]. Several clustering methods have been
employed for brain tissue segmentation, such as the
Gaussian mixture model [11] and fuzzy C-means [12].
Besides, the tissue atlases have been employed to
propose effective segmentation methods to enable accur-
ate segmentation of tissues [14].
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The existing voxel-vise segmentation approach for
MRI have drawbacks in neglecting the spatial informa-
tion among data. Fortunately, the promising supervoxel
technique provides a possible solution to make use of
the statistical information of the local regions. In the
past decade, this technique has been increasingly
employed for natural image processing and analysis in
the fields of computer vision and machine learning
[15–17]. This powerful technique can group similar
voxels into a meaningful supervoxel. The brain MRI
image consists of approximately piecewise constant
regions, which is suitable for generating appropriate
supervoxels. Therefore, the supervoxel technique has
been recently utilized for several brain MRI analysis appli-
cations, such as segmentation, registration and functional
parcellation [18–21]. However, with approach supervoxels,
it is still challenging to enable robust segmentation due to
the tissue heterogeneity [22, 23].
To cope with these issues, this paper proposes an

effective algorithm for the brain tissue segmentation
based on supervoxel and graph filter. A novel dis-
tance metric is proposed to develop an efficient and
effective supervoxel generation method to suppress
the noise in the MRI image. After computing features
from each supervoxel, a graph filter algorithm is
employed to classify these supervoxels into different
types of brain tissues. Experiments on two widely
utilized MRI dataset demonstrate the superior per-
formance of the proposed approach compared to the
state-of-art voxel-vise and supervoxel based brain
MRI segmentation algorithms. The proposed method
achieves mean dice similarity coefficient (DSC) of
0.94, 0.92 and 0.90 for the segmentation of white
matter (WM), grey matter (GM) and cerebrospinal fluid
(CSF) for BrainWeb 18 dataset, and mean DSC of 0.85, 0.87
and 0.57 for the segmentation of WM, GM and CSF for
IBSR18 dataset.

Methods
Materials
The MRI datasets in this study includes the BrainWeb
18 MRI dataset [24] and the Internet Brain Segmenta-
tion Repository (IBSR) dataset [25]. The BrainWeb 18
dataset has 18 MRI images from the McConnell Brain
Imaging Centre. The images are simulated with different
level of noise ranging from 0 to 9% and with an intensity
non-uniformity (INU) level of 0, 20% or 40%. Each
image includes 181 × 217 × 60 voxels with 1 mm ×
1 mm× 1 mm. The IBSR dataset is consisting of 18 real
MRI images derived from healthy subjects. Each MRI
volume has a size of 256 × 256 × 128 voxels with 1 mm ×
1 mm× 2 mm. All the images in the two datasets are
provided with the ground truth tissue segmentation of
WM, GM and CSF.

Methods
The proposed method mainly includes two steps, i.e.
supervoxel generation and supervoxel classification. An
effective supervoxel algorithm is first employed to over
segment the brain MRI volume into a number of small
compact supervoxels with homogenous appearance.
These supervoxels are then classified into different types
of tissues based on graph filter.

Supervoxel generation for brain MRI
In the past decade, a number of algorithms have been
proposed to generate meaningful supervoxels with
homogeneous regions. The commonly used algorithms
are normalized cuts, mean shift, turbo pixels and the
simple linear iterative clustering (SLIC) method.
Normalized cuts [26] recursively partitions a graph to
globally minimize the cost function. Its high computa-
tional complexity limits its application for images with a
large size. Mean shift [27] is a gradient based method,
which generates supervoxels by recursively moving to
the kernel smoothed centroid. This approach cannot
control the size and the compactness of supervoxels,
which may produce irregular supervoxels. The turbo
pixel method [28] perform supervoxel generation by
evolving the geometric flow from seeds sampled
uniformly on the image plane. The SLIC method [29]
employs the k-means clustering to classify neighborhood
voxels into each seed for generating compact supervox-
els. This efficient method can control the number and
compactness of the supervoxels.
Among these methods, the SLIC method has been

widely applied for the high dimensional MRI images due
to its efficiency [30–32]. SLIC initially generates a num-
ber of cluster centers sampled at regular intervals of
length at each dimension of the image plane or volume.
The length L is calculated by the number of voxel N and

the number of supervoxels q as L ¼ ffiffiffiffiffiffiffiffiffi
N=q3

p
. The cluster

centers are then perturbed to the lowest position in a
neighborhood to avoid placing them at an edge. The
voxel within a 2L × 2L × 2L area round the center on the
xyz plane are clustered into each supervoxel based on
their intensity and location similarity, which guarantees
the homogeneity and compactness of supervoxels. After
clustering all the voxels into the nearest cluster center, a
new center is calculated as the average intensity and
spatial positions of all the voxels belonging to this clus-
ter. The process of clustering is iteratively repeated until
that the distance between the new centers and the previ-
ous ones is smaller than a threshold.
In the SLIC algorithm, images are considered as

approximately uniform for homogeneous regions. How-
ever, MRI images are always contaminated by the Rician
noise in the imaging process. The voxel similarity
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measurements in the SLIC method may be unreliable on
MRI images. To overcome this problem, a novel voxel simi-
larity measurement is proposed to suppress the noise as

dint ¼ G�INi−Ick k
d ¼ dint þ γdspa

ð1Þ

where INi represent the intensity matrices of the cubic
image patches with central voxel Ni and Icdenotes the
intensity of seed c. Function G represents the standard
Gaussian kernel and ∗ denotes the convolution operator.
The intensity distance between the voxel Ni and the seed
c is denoted as dint, and the spatial similarity between
the voxels and seed is represented as dspa. A
regularization parameter γ is introduced to weigh the
relative importance between voxel intensity and the
spatial proximity. The regularization parameter is set 0.2
empirically in this study. The parameter of Gaussian
kernel is adopted to the noise level estimated using the
median absolute deviation method [33].
Figure 1 illustrates the supervoxels generated from a

noisy brain MRI image using the SLIC, monoSLIC [34], re-
gularity preserved supervoxel (RSV) method [35] and our
proposed method. It can be easily seen that the original
SLIC method is sensitive to the noise, and generate irregu-
lar supervoxels. MonoSLIC and RSV methods can generate
regular supervoxels with a bad adherence of the tissue
boundaries, especially at the cortex regions. Our approach
can guarantee the boundaries of supervoxels to adhere well
the brain tissue boundaries in image. Furthermore, our sue-
pervoxel algorithm makes the size of supervoxel as regular
as possible. The proposed supervoxel technique has high
potential to be applied for the MRI images of other organs
or other medical images, such as computed tomography
and ultrasound imaging [36, 37].

Supervoxel classification based on graph filter
After generating supervoxels for the 3D brain MRI image,
it is essential to develop an effective approach to classify
these supervoxels into different types of tissues to enable
an accurate segmentation. Here we propose to classify
these supervoxels based on an effective graph filter

approach [38]. An undirected weighted graph G = {V,A} is
constructed for the MRI image. As there are huge number
of voxels in the brain MRI volume, we construct a graph
among the above generated supervoxels, which can highly
reduce the computational complexity. The nodes V = {v1,
v2,…, vN} of the graph are supervoxels, and A is a N ×N
weighted adjacency matrix. Each node is represented by
the intensity features derived from the corresponding
supervoxel. The weight between each node is obtained by
computing the similarity between the nodes using the ra-
dial basis function between the features

A i; jð Þ ¼ exp −
vi−v j
� �2

2α

( )
ð2Þ

where vi represents the value of feature in node i and α
represents hyper parameter. As the supervoxels in the
same class have similar features, each node is only con-
nected to K nearest neighbors in the graph.
Similar to traditional digital signal processing, filters

can be performed on the graph signal. It has been
demonstrated that a graph filter H can be linear and
shift invariant with the assumption of the equation be-
tween the characteristic and minimal polynomials of the
adjacency matrix. The graph filter is defined as

H ¼ h Að Þ ¼
XL

l¼0
hlA

l ð3Þ

where A is the adjacency matrix, and L represents the
taps of filter.
This study proposes a semi-supervised segmentation

approach with a few number of known labels. The
segmentation is performed by classification of supervox-
els using an adaptive graph filter. The graph filter propa-
gates the nodes of known labels to predict the nodes of
unknown labels, defined as

spredict ¼ h Að Þsknown ð4Þ
The optimal taps can be adaptively determined by

adaptively constructing filter based on the initial labels.
For the nodes Vknown of the the initial known labels, the
the label sknown is set to − 1 or 1 and the unknown labels

Fig. 1 Supervoxels of a noisy brain MRI image using SLIC and our proposed method. a is the original brain MRI image, b, c, d and e are the
supervoxel results from the SLIC, monoSLIC, RSV and the proposed method
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are set to 0. A smaller subset of training nodes Vtrain is
selected from the nodes with known labels Vknown. A
graph filter can be found from the training nodes that
correctly classify the nodes in Vknown. An adaptive filter
can thus be estimated from the selected training nodes
with a least square minimization problem

argmin Dh Að Þ strain−1N
�� �� ð5Þ

where D = diag (sknown) is the diagonal matrix with
initial known labels on its main diagonal. The binary
classifier can be extent to the multi-class classification in
brain tissue segmentation by the one-against-all strategy.

Results
The performance of the proposed method was evaluated on
two widely used datasets, including the BrainWeb 18 MRI
dataset [24] and the Internet Brain Segmentation Repository
(IBSR) dataset [25]. The number of supervoxel was set to
4000 empirically for these two datasets in the experiments
and the taps of filter L was set to 4 in the experiments.
The performance of the proposed approach is com-

pared with other state-of-the-arts, including two voxel-
wise methods and one promising supervoxel based
methods. The two voxel-wise methods are the FMRIB
Software Library v5.0 (FSL) [39] and Statistical Paramet-
ric Mapping (SPM8) [40], which are widely used in the
neuroscience community. The FSL software employs ex-
pectation maximization algorithm with hidden Markov
random field model for segmentation. The SPM8 tool
utilizes atlas based approach with the probabilistic at-
lases of brain tissues. The supervoxel based method is a

recently developed approach especially for brain tissue
segmentation [20].
Figure 2 illustrates the brain tissue segmentation re-

sults of the image volume with a noise level of 9% and
an INU level of 40% from the BrainWeb dataset. In the
figure, the 2D axial, sagittal and coronal views of 3D
segmentation results are shown for visual inspections
using the itk-snap tool [41]. The first and second col-
umns are the image and the ground truth of the seg-
mentation with red, green, blue voxels corresponding to
CSF, GM and WM tissues, respectively. The third,
fourth, fifth, sixth, seventh and eighth column illustrate
the segmentation results of the FSL, FSL on denoised
data, SPM8, SPM8 on denoised data, ITDS methods and
our proposed algorithm. As the ground truth for refer-
ence, we can observe the advantage of our proposed seg-
mentation over other three approaches. In particular, the
proposed method shows apparently better delineations
of the WM and GM tissues. With the results on the
denoised data with FSL (the fifth column) and SPM8(the
seventh column), the FSL and SPM method cannot
obtain better results on denoised MRI volumes [33].
This may be because that these two segmentation
models consider the noise in the MRI volume, and the
denoised data corrupt the intrinsic features.
To further assess the performance objectively, quantitative

evaluation is performed by calculating the dice similarity co-
efficient (DSC) and volume difference ratio (VDR) [42–44].
These metrics are commonly utilized benchmark evaluation
strategies in the segmentation community. The DSC metric
measures the similarity between automatic segmentation
results and ground truth for each tissue, defined as

Fig. 2 Segmentation results using different methods for the brain image with 9% noise and INU level of 40% from the BrainWeb18 dataset. The
colors of red, green and blue represents the labels of segmentation for cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM). The
three rows are the two dimensional axial, sagittal and coronal views of three dimensional segmentation results, respectively. Column (a) and (b)
are the original image and the ground truth of the segmentation. Column (c-g) are the segmentation results of the FSL, FSL on denoised data,
SPM8, SPM8 on denoised data, ITDS and the proposed method
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DSC ¼ 2� TP
2� TPþ FPþ FN

ð6Þ

The VDR metric measures the volume difference be-
tween and the ground truth and the achieved segmenta-
tion results, defined a s

VDR ¼ FP−FNj j
TPþ FN

ð7Þ

where TP, FP and FN are the numbers of true positive,
false positive and false negative voxels, respectively. A
higher value of DSC and a lower value of VDR represent
a better correspondence to the ground truth, which de-
notes a higher accuracy of the segmentation results.
Tables 1 and 2 shows the performance of the segmen-

tation results for each method on the BrainWeb18 and
IBSR18 datasets, respectively. As for the BrainWeb18
dataset, the proposed method provides the highest DSC
values on CSF, GM and WM, followed by SPM8, FSL
and ITDS. The ITDS method using traditional SLIC
supervoxel method is sensitive to the noise in the images
from the BrainWeb18 dataset. As for the IBSR18 dataset,
the proposed method achieves best performance in seg-
mentation of CSF and GM, and obtains comparable ac-
curacy of WM segmentation compared with the other
three methods. The ITDS can achieve better perform-
ance than the SPM8 and FSL for the low level of noise
in the images of the IBSR18 dataset. The VDR value is
quite lower than other three methods for the two
datasets and especially for the IBSR18 dataset. This is
because that the proposed method under-estimate the
CSF tissue due to the small training number of
supervoxels.
TIn the above experiments, the ratio of labels is set to

0.3 for each brain MRI image. We further investigate the

effect of the ratios for the segmentation accuracy in the
proposed framework. The segmentation accuracies for
each type of tissue are computed at the ratio of 0.02,
0.05, 0.1, 0.15, 0.2 and 0.3 for both the BrainWeb18
and IBSR18 dataset. Figures 3 and 4 illustrates the
average DSC and VDR values of different volumes for
the tissues of WM, GM and CSF at different ratio of
known labels.
To further evaluate the effectiveness of the proposed

supervoxel method, we compare the performance with
the monSLIC and RSV method. All the methods gener-
ate about 4000 supervoxels, and same parameters are set
with 30% labels with each types of tissues in the classifi-
cation stage. For the BrainWeb datasets, the DSC values
of results with the monSLIC method are 0.74, 0.71, 0.60
for WM, GM and CSF, and DSC values of results with
the RSV method are 0.70, 0.72, and 0.69. For the IBSR
datasets, the DSC values of results with the monSLIC
method are 0.78, 0.84 and 0.53 for WM, GM and CSF,
and DSC values of results with the RSV method are 0.
67, 0.78 and 0.40. Our method obtains better perform-
ance than other two popular supervoxels for the two
datasets.

Discussion
The results on the two commonly utilized datasets dem-
onstrated the effectiveness of the proposed brain tissue
segmentation algorithm based on both qualitative and
quantitative evaluations. The performance was achieved
due to the appropriate supervoxels and the effective
clustering approach. At first, a novel supervoxel method
was developed to suppress the influence of noise in MRI
to guarantee the boundaries of supervoxels to adhere
well the brain tissue boundaries in image. Secondly, an
effective semi-supervised clustering algorithm was

Table 1 Performance of segmentation results on the BrainWeb18 dataset

DSC VDR

WM GM CSF WM GM CSF

FSL 0.91 ± 0.04 0.88 ± 0.03 0.89 ± 0.01 0.10 ± 0.08 0.08 ± 0.05 0.24 ± 0.01

SPM8 0.91 ± 0.03 0.90 ± 0.02 0.89 ± 0.03 0.06 ± 0.05 0.05 ± 0.01 0.14 ± 0.06

ITDS 0.90 ± 0.05 0.88 ± 0.05 0.88 ± 0.04 0.07 ± 0.03 0.06 ± 0.02 0.12 ± 0.05

Proposed 0.94 ± 0.01 0.92 ± 0.01 0.90 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.04 ± 0.01

Table 2 Performance of segmentation results on the IBSR18 dataset

DSC VDR

WM GM CSF WM GM CSF

FSL 0.87 ± 0.03 0.76 ± 0.03 0.53 ± 0.06 0.11 ± 0.13 0.23 ± 0.04 1.32 ± 0.37

SPM8 0.87 ± 0.01 0.80 ± 0.04 0.55 ± 0.06 0.06 ± 0.04 0.18 ± 0.04 1.11 ± 0.39

ITDS 0.86 ± 0.02 0.81 ± 0.03 0.60 ± 0.05 0.07 ± 0.06 0.16 ± 0.05 0.75 ± 0.38

Proposed 0.85 ± 0.01 0.87 ± 0.03 0.57 ± 0.08 0.08 ± 0.05 0.04 ± 0.03 0.17 ± 0.10
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proposed based on graph filtering to classify the super-
voxels into three types of tissues.
For the performance on the two datasets, there were

dramatically decrease accuracy of CSF in the IBSR 18
compared with those from the BrainWeb18 dataset.
There are two main reasons for such results. Firstly, the
BrainWeb18 dataset is a simulated dataset, and the
IBSR18 dataset is a real dataset. The BrainWeb 18 data-
set can be easy segmented while it is more difficult for
the IBSR18 dataset. Secondly, among the three tissues,
CSF has a small number of voxels compared to GM and
WM. The employed DSC and VDR values measure the
overlapping ratio and volume difference between auto-
matic segmentation results and ground truth. Therefore,
a same number of wrong segmented voxels can lead to a
larger decrease of the DSC values or a large increase of
VDR values for CSF compared with the other two
tissues.
For the supervoxel clustering, it is apparent that

with a small ratio of labels, there was a relatively low

segmentation performance for all three tissues.
Increasing the ratio of labels can obtain consistent
increasing segmentation accuracy of all the three tis-
sues. There was a slight improvement of performance
when the ratio of labels is more than 0.15, which was
sufficient enough to learn the intrinsic features of dif-
ferent types of tissues.

Conclusions
In this paper, we have proposed an effective algorithm
for brain tissue segmentation from the MRI image
based on supervoxel and graph filter. An effective
supervoxel algorithm was proposed to suppress the
noise influence in the MRI images. The supervoxels
were then classified into three types of tissues inte-
grating features using graph filter. Qualitative and
quantitative evaluations on two widely utilized MRI
datasets demonstrate the superior performance of the
proposed approach compared to the state-of-art brain
MRI segmentation algorithms.

Fig. 3 Dice similarity coefficients of segmentation results for the BrainWeb 18 and IBSR 18 datasets using our proposed method with different
ratio of labels

Fig. 4 Volume difference ratios of segmentation results for the BrainWeb 18 and IBSR 18 datasets using our proposed method with different ratio
of labels
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