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contrast MRI images with graph based
redundant wavelet transform
Zongying Lai1,2, Xinlin Zhang1, Di Guo3, Xiaofeng Du3, Yonggui Yang4, Gang Guo4, Zhong Chen1 and Xiaobo Qu1*

Abstract

Background: Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information
reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical
diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate
data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However,
images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the
images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT).

Methods: First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast
images. Second, joint multi-contrast image reconstruction is formulated as a ℓ2, 1 norm optimization problem under
GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction
method.

Results: Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction
method can achieve lower reconstruction errors and better preserve image structures than the compared joint
reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity
constraint of multi-contrast images.

Conclusions: The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based
redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate
that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions.
With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring
the complementary information provided by multi-contrast MRI.
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Background
Multi-contrast images in magnetic resonance imaging
(MRI) provide abundant contrast information reflecting
the characteristics of the internal tissues of human bodies,
and thus have been utilized in clinical diagnosis. However,
long acquisition time limits the application of multi-
contrast MR imaging.

Under-sampling the k-space data and reconstructing
images with sparsity constraint is one efficient way to
accelerate MRI sampling [1–5]. However, the data ac-
quisition factor is limited since images are compro-
mised when images are reconstructed individually. The
previous work [6] suggested to use another fully-sampled
contrast image to train an adaptive sparse representation
with Graph-based redundant wavelet transform (GBRWT)
and then greatly improve the reconstructed images [7].
This approach, however, cannot reduce the overall accel-
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eration factor in data acquisition because of the full
sampling in another contrast images [6]. Thus, to further
accelerate multi-contrast MRI, under-sampling all multi-
contrast images, e.g.T1 weighted (T1W), T2 weighted
(T2W) and proton density weighted (PDW) MRI images,
and maintain high quality image reconstruction are
expected.
The MRI image structures under different contrast

settings are the same due to the multiple acquisi-
tions of the same anatomical cross section [6, 8–12].
Thus, non-zero coefficients may occur at the same

spatial locations in the sparsifying transform do-
mains, e.g. finite difference, wavelet transform [2]
and patch-based sparse transformations [13–16].
Therefore, it is possible to improve the image recon-
struction if this extra information is incorporated into
sparse image reconstruction [17].
Sparse representation capability plays a key role in

sparse MRI reconstruction. The GBRWT [6, 7]
transform was verified to have good sparsification
capability for MRI images. The main step of GBRWT
transform is to construct a graph to find new

Fig. 1 Flowchart of the proposed method. The xref denotes the reference image used to train the graph wavelet transform, y1, y2, ⋯, yT denote
the under-sampled k-space data of multi-contrast images, x̂1; x̂2;⋯; x̂T denote the reconstructed images

Fig. 2 The permutation and wavelet filtering on re-ordered image pixels, a and b are the forward and inverse transforms
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permutations adaptive to target image structures, and
then to obtain the sparser transformation with wave-
let filters acting on the permutated smooth signals.
However, if high acceleration factor is set, very lim-
ited information will be provided for single image
thus the reconstruction will be compromised. Thus,
the combining merits of joint reconstruction and
GBRWT are expected.
In this study, we propose to reconstruct the multi-

contrast MRI with adaptive GBRWT sparse representa-
tions and joint sparsity among multi-contrast images.
An alternating direction method with continuity
(ADMC) [18] algorithm is introduced to solve the joint
ℓ2, 1-norm minimization problem. The proposed ap-
proach will be compared with the joint sparse recon-
struction method based on shift invariant discrete
wavelet transform (SIDWT) [17] and Bayesian com-
pressed sensing (BCS) [19].

Methods
The under-sampled k-space data of multi-contrast MRI
images are expressed as

y ¼ UFxþ ε; ð1Þ

where x = [x1;⋯; xT] denotes the column stacked multi-
contrast images, T the number of contrasts. y = [y1;⋯; yT]
the column stacked under-sampled k-space data, ε noises
in the sampled data. The UF is the under-sampling oper-
ator in the Fourier space, which can be expressed as

UF ¼
U1F1 0 0
0 ⋱ 0
0 0 UT FT

2
4

3
5: ð2Þ

Each UiFi, (i = 1,⋯,T) acts on one of the multi-
contrast images. We adopt different sampling patterns, i.
e. U1 ≠⋯≠Ui ≠⋯≠UT, and the same Fourier trans-
form bases, i.e. F1 =⋯ = Fi =⋯ = FT for each image of
individual contrast.
The flowchart of the proposed joint sparse recon-

struction is shown in Fig. 1. Reconstructed image
based on SIDWT [17] is adopted as reference image
to train the GBRWT from the under-sampled k-space
data, because SIDWT can mitigate the blocky artifacts

Fig. 3 Joint sparsity property of multi-contrast image coefficients. Group sparsity for traditional wavelet transform is shown in (A), (a1-a4) are images of
two contrasts (T1W and T2W MRI images) and their corresponding coefficients in the 3rd sub-bands of traditional redundant Haar wavelet transform.
Group sparsity of GBRWT is shown in (B) and (b1-b2) are two selected fragments of GBRWT coefficients

Fig. 4 The grouping operator G and the grouped GBRWT coefficients
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introduced by orthogonal wavelet transform and bet-
ter preserve the structures in the target images [15,
16]. With GBRWT as the sparse representation,
multi-contrast images can be simultaneously recon-
structed by implementing joint sparsity constraints on
these transformation coefficients.

Graph-based redundant wavelet transform
Given a reference image, the GBRWT is achieved by car-
rying out redundant wavelet transform on permuted

signals of new orders [7]. The new orders are found in
weighted graph constructed from the reference image, in
which image patches collected by a sliding window serve
as the vertex and the patch similarities computed using
wm, n =w(bm, bn) = ‖bm − bn‖2 (where bm and bn denote
the mth and the nth patches) serve as the weight. The
new orders are obtained by finding the shortest possible
path on the patch-based graph [7, 20]. Then, redundant
wavelet transform is performed on permuted pixels to
achieve sparse representation.

Fig. 5 Multi-contrast Brainweb image reconstruction. a-d images with four contrasts; e-h sampling patterns operated on individual contrast
images at the same sampling rate 22%

Fig. 6 Multi-contrast knee images and under-sampling masks. a-c multi-contrast knee images with 3 kinds of contrasts; d-f 3 different sampling
masks operating on each image of individual contrast with the same sampling rate 32%
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The process of permutation and wavelet filtering in
GBRWT is shown in Fig. 2. In the lth level
decomposition, the input signal al will be first
reordered by permutation matrix Pl, whose inverse
process is PH

l and satisfied PH
l Pl ¼ I . Then, non-

decimated wavelet transformation Φl, whose inverse
process is ΦH

l and satisfied ΦH
l Φl ¼ I, are performed

on the re-ordered pixels. The output al + 1 and dl + 1

of lth level non-decimated decomposition will be of
the same size with the input signal ~al . Let ΦlPl be
the lth level decomposition of GBRWT, and PH

l Φ
H
l be

corresponding composition process, and then ΦlPl

satisfies the following property

PH
l Φ

H
l ΦlPl ¼ cI; ð3Þ

where c denotes the redundancy of GBRWT transform.
It has been verified that GBRWT provides sparser repre-
sentations than traditional wavelet transform, thus can
improve the MRI image reconstruction [7].

Joint sparsity of multi-contrast image coefficients
Multi-contrast MRI images are obtained by different par-
ameter settings, but share the same anatomical cross section
[6–8]. The image structures corresponding to tissue loca-
tions remain unchanged with contrast varied, which leads
to spatial position-related coefficients. Joint sparsity means
that, under appropriate sparsifying transforms, the positions
of non-zero coefficients correspond directly to same spatial
locations in multiple images. Figure 3 shows that the non-
zero transform coefficients of two contrast images occur at
the same positions in the Haar wavelets transform and

GBRWT domains. Thus, the joint sparsity of GBRWT pro-
vides extra information on images and may further improve
the reconstruction of multi-contrast images.

Problem formulation
The joint sparsity promoting problem in multi-contrast
MRI image reconstruction with GBRWT is solved using
the mixed ℓ2, 1 norm minimization [9, 21, 22]:

min
x

GΨxk k2;1 s:t: UFx−yk k22≤σ2; ð4Þ

where, Ψ ¼
Ψg 0 0
0 ⋱ 0
0 0 Ψg

2
4

3
5 and Ψg denotes the

GBRWT representation, in which lth level
decomposition be expressed as ΦlPl. Let α =Ψx be the
corresponding coefficients, then for an image set which
includes T kinds of contrasts, the column stacked
coefficients can be expressed as: α = [α1;⋯; αT]. The
role of grouping operator G is to reshape the column
stacked coefficients of multi-contrast MRI images into a
matrix as shown in Fig. 4. Then, one column of Gα
stands for coefficients of one image, and one row forms
a group.
The ℓ2, 1 norm is defined as

Gαk k2;1 ¼
XN
i¼1

XT
j¼1

αij

�� ��2 !1=2

; ð5Þ

where, G is the group operator, N is the number of
transform coefficient and T the number of contrast.

Fig. 7 Multi-contrast brain MRI images. (A) are T2W and T1W images of one subject; (B) are images with 4 kinds of contrast for another subject
by setting TE to different values
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Numerical algorithm
The alternating direction method with continuation [18]
is incorporated in the ℓ2, 1 norm optimization. Let α
=Ψx, the objective in Eq. (4) can be rewritten as

min
x;α

Gαk k2;1 s:t: UFx−yk k22≤σ2;α ¼ Ψx : ð6Þ

Furthermore, the objective function in (6) can be over-
relaxed to be unconstraint as

min
x;α

Gαk k2;1 þ
β
2

α−Ψxk k22 þ
λ
2

UFx−yk k22: ð7Þ

The λ is a parameter to balance the sparsity and data
fidelity. The β is fixed in the inner loops and changes
continuously to achieve optimal reconstruction in the
outer loops. When β→∞, the solution of Eq. (7) ap-
proaches to that of Eq. (6). When β is fixed, x and α will
be computed alternatively by the following two steps:

1) With x fixed, α will be computed by solve the objective:

min
α

Gαk k2;1 þ
β
2

α−Ψxk k22: ð8Þ

Algorithm 1: Joint multi-contrast MRI reconstruction based on GBRWT

Parameters: λ
Input:

k-space data y = [y1;⋯; yT]; g levels of permutation orders Pj, {j = 1,⋯,
g}; regularization parameter λ; tolerance of inner loop η = 10−4.

Initialization: x = (UF)Hy, xprevious = x, β = 26.

Main:

While β ≤ 212

(1) Given x, solving α by computing Eq. (10) for each group of
coefficients αi, {i = 1,⋯, N};

(2) Applying α into Eq. (12) to obtain the solution x;
(3) If ‖Δx‖ = ‖xprevious − x‖ > η, then xprevious = x, go to step (1);
Otherwise: go to step (4);
(4) x̂¼x, β = 2β, go to step (1);

End while

Output x̂

Fig. 8 Brainweb reconstruction errors (× 5) with 22% sampled data (Cartesian). Rows 1–4 correspond to multi-contrast images shown in Fig. 5 (a-d) respectively.
Columns 1–4 denote the results obtained from individual reconstruction based on GBRWT, JSIDWT, JBCS and JGBRWT reconstruction respectively
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To find the extreme of objective function in Eq. (8),

firstly the equivalent transformation kα−Ψxk22
¼ kGα−GðΨxÞk2F is taken; then, the coefficients in
rows of Gα (each group) are computed separately by
solving least square method. Let αi = (Gα)i, :, (Ψx)i

= (Ψx)i, : denote the ith group of Gα and Ψx
respectively, we find solution by

min
αi

αi
�� ��

2 þ
β
2

αi− Ψxð Þi�� ��2
2: ð9Þ

Then, α can be obtained via each group computing:

αi ¼
Ψxð Þi�� ��

2
−
1
β

Ψxð Þi�� ��
2

Ψxð Þi; Ψxð Þi�� ��
2 >

1
β

0 ; Ψxð Þi�� ��
2≤

1
β

8>>>><
>>>>:

ð10Þ

2) Fix α, x can be computed by solving

min
x

β α−Ψxk k22 þ λ UFx−yk k22: ð11Þ

The minimization with respect to x can be solved by
finding the extreme of least square problem in Eq. (11).
Finally, we get

x ¼ FH βcIþ λUHU
� �−1

βFΨHαþ λUHy
� �

; ð12Þ

where, c is the redundancy caused by GBRWT
transform. The numerical algorithm pseudo-code is
listed in Algorithm 1.

Results
The image reconstruction was performed on a server
with E5-2637 v3 (3.5G Hz) *2 CPU, 8 GB memory. The
proposed method, Joint sparse reconstruction based on
GBRWT (JGBRWT), is compared with the Joint sparse
reconstruction method based on SIDWT (JSIDWT)
[15–17], that replacing Ψg with SIDWT in Eq. (4) and
Joint reconstruction with Bayesian Compressed Sensing
(JBCS) [19], which is a state-of-the-art joint multi-
contrast image reconstruction that jointly explores the
gradient coefficients of multiple images. The comparison
with GBRWT-based single image reconstruction [7] is
also included to demonstrate the advantage of the joint
reconstruction. The parameter values for JBCS are taken
as the same in the cods shared by the authors (http://
martinos.org/~berkin/software.html). For the proposed
method and JSIDWT, λ is set as 104.
The relative ℓ2 norm error (RLNE) defined as eðx_Þ¼

k x_ −~xk2=k~xk2 (in which ~x is ground truth and x_ is the
reconstructed image) and mean structure similarity index

Fig. 9 Reconstruction errors of knee images (× 5) with 32% sampled data (Cartesian). Rows 1–3 correspond to multi-contrast images shown in
Fig. 6(a-c) respectively. Column 1–4 denote the results obtained from GBRWT, JSIDWT, JBCS and JGBRWT reconstruction respectively
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measure (MSSIM) [23] served as the criteria for assessing
the quality of reconstructed image quality. Smaller RLNE
means lower reconstructed error and higher MSSIM
indicates better structure preservation capability.
The Brainweb images (http://brainweb.bic.mni.

mcgill.ca/) [24, 25] (Fig. 5) as well as the in vivo
multi-contrast images were used to validate the effi-
ciency of the proposed method. The multi-contrast
knee images (Fig. 6) were acquired from GE 3 Tesla
scanner (Discovery MR750W, USA) with parameters
(T1W: FSE, TR/TE = 499 ms/9.63 ms; T2W: TR/TE =

2435 ms/49.98 ms, Proton density weighted image:
TR/TE = 2253 ms/31.81 ms; FOV = 180 × 180 mm2,
slice thickness = 4 mm). The multi-contrast brain im-
ages (Fig. 7) were acquired from SIMENS 3 Tesla
scanner (MAGNETOM Trio Tim, Germany) with pa-
rameters (T2W: TSE, TR/TE = 3000 ms/66 ms,; T1W,
FLAIR: TR/TE = 3900 ms/9.3 ms,; FOV = 200 ×
200 mm2, slice thickness = 5 mm) for Fig. 7(A) and
TSE: TR = 4000 ms, FOV = 192 × 192 mm2, slice
thickness = 3 mm, ΔTE =8 ms for the multi-echo data
in Fig. 7(B).

Fig. 10 Reconstructed brain images and corresponding errors (× 5) with 27% sampled data. The 1st row shows fully sampled multi-contrast images,
the 2nd and 3rd rows are reconstructed images and last two rows are reconstruction errors corresponding to the 2nd and 3rd rows, respectively.
Columns 1 to 4 denote the results obtained from GBRWT, JSIDWT, JBCS and JGBRWT, respectively
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Fully sampled multi-contrast MRI images shown in
Figs 5, 6 and 7 are used for the experiment of
under-sampling and joint sparse reconstruction. Re-
construction errors shown in Figs. 8, 9 and 10 reveal
that the proposed method outperforms the JSIDWT
and JBCS. The lower error of the proposed method
indicates better fidelity and edge-preserving capabil-
ities compared with JSIDWT and JBCS. Besides, the
reconstruction errors were reduced when comparing
the proposed method with single image reconstruc-
tion based on the same GBRWT transform, implying
that the improvement obtained by joint reconstruc-
tion over single image reconstruction.
Tables 1, 2 and 3 show RLNEs and MSSIMs of

reconstructed images. These criteria indicate that the
proposed method gained the highest MSSIM and the
lowest RLNE, and thus recovered the images most
faithfully.
One typical brain image reconstruction with 27%

sampled data are shown in Fig. 10. In the zoomed-
in area of the 2nd row, the sulcus of the T2W
image appears in the middle of the fully sampled
and JGBRWT reconstructed images, but nearly
disappears for JBCS reconstruction. In the marked
region of the 3rd, the proposed method leads to
more consistent reconstruction with the fully sam-
pled image than other methods. These improve-
ments are also confirmed by the error images in
the last two rows.

2D under-sampling
The 2Dunder-sampling patterns (Fig. 11) was explored
to demonstrate the potential applications of the pro-
posed method in 3D imaging, in which 2D phase encod-
ing plane can be under-sampled.
Brainweb reconstructed errors shown in Fig. 12

demonstrate that on the simulated database, the
lowest reconstruction errors were obtained with
the proposed method. The corresponding RLNE/
MSSIM are shown in Table 4. Figure 13 implies
that the proposed method led to the lowest
brightness in the error images and thus maintained
fidelity best. The criteria listed in Tables 4 and 5

indicate that the proposed method achieved the
highest MSSIM and the lowest RLNE on the tested
dataset.

Different sampling rates
The curves in Fig. 14 show that the RLNEs
decreased with sampling rate increased. The RLNE
line of the proposed JGBRWT method (dark green
line) is lower than that of GBRWT (or contrast-by-
contrast reconstruction, black line) with the same
GBRWT representation, indicating benefits are
achieved by utilizing joint sparsity among multi-
contrast images. The JGBRWT also outperforms
other joint reconstruction method, including
JSIDWT (red line) and JBCS (blue line), in terms of
lower RLNEs at all sampling rates.

The same sampling patterns
The proposed method is compatible to same or
different sampling patterns. Reconstruction criteria
in Table 6 show that the proposed method
outperforms the compared ones under the same
sampling patterns. Besides, at the same sampling
rate, using different sampling patterns lead to better
evaluation criteria than using same sampling
patterns (Table 6 vs. Table 1).

Discussions
Limitations on choosing image to train the graph
Choose an arbitrary pre-reconstructed image as refer-
ence will lead to reconstruction errors (RLNEs) slightly
change as shown in Fig. 15. But the RLNEs are still
much lower than single image reconstruction. A possible
way in the future work is to train a GBRWT jointly from

Table 1 RLNE/MSSIM of Brainweb images with 22% Cartesian
sampled data in Fig. 5

Images GBRWT JSIDWT JBCS JGBRWT

Fig. 5(a) 0.0688/0.9321 0.1643/0.6944 0.0985/0.7091 0.0365/0.9799

Fig. 5(b) 0.1048/0.9206 0.2284/0.6774 0.1336/0.7143 0.0609/0.9701

Fig. 5(c) 0.0492/0.9038 0.1233/0.6742 0.0525/0.7665 0.0232/0.9815

Fig. 5(d) 0.0660/0.9100 0.1222/0.7265 0.0596/0.8005 0.0306/0.9821

Table 2 RLNE/MSSIM of knee images with 32% Cartesian
sampled data in Fig. 6

Images GBRWT JSIDWT JBCS JGBRWT

Fig. 6(a) 0.0615/0.9560 0.0932/0.9211 0.0850/0.9064 0.0582/0.9624

Fig. 6(b) 0.0629/0.9605 0.0976/0.9234 0.0890/0.9004 0.0534/0.9704

Fig. 6(c) 0.0883/0.9337 0.1216/0.9312 0.1238/0.9180 0.0823/0.9607

Table 3 RLNE/MSSIM of reconstructed brain images with 27%
sampled data in Fig. 7

Images GBRWT JSIDWT JBCS JGBRWT

Fig. 7(a1) 0.0505/0.9612 0.0924/0.9089 0.1297/0.7759 0.0487/0.9636

Fig. 7(a2) 0.0762/0.9593 0.1103/0.9149 0.1502/0.7817 0.0733/0.9639
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Fig. 11 The 2D under-sampling mask. a is pseudo-radial sampling with sampling rate 11%, b is random sampling with sampling rate 15%

Fig. 12 Reconstructed error (× 5) using 2D pseudo-radial under-sampling with 11% sampled data of Fig. 5. Rows 1–4 correspond to multi-contrast
images shown in Fig. 5 (a-d) respectively. Columns 1–4 denote the results obtained from GBRWT, JSIDWT, JBCS and JGBRWT
reconstruction respectively
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all the under-sampled multi-contrast images to make full
use of the common/complementary information of
multi-contrast images.

Limitations on un-registered images
Un-registered multi-contrast images will go against
the joint sparsity assumption, and thus affect joint
reconstruction performance. Reconstructed images of
aligned and misaligned multi-contrast images (we
simulate misalignment by rotating Fig. 16(a) with 10
degrees) shown in Fig. 16 demonstrate that
misalignment will make the detail reconstruction

Table 4 RLNE/MSSIM for the reconstruction using 11% pseudo-
radial k-space data of Fig. 5

Images GBRWT JSIDWT JBCS JGBRWT

Fig. 5(a) 0.0443/0.9779 0.1011/0.6966 0.0835/0.8595 0.0395/0.9813

Fig. 5(b) 0.1036/0.9510 0.2118/0.6246 0.1632/0.7865 0.0811/0.9680

Fig. 5(c) 0.0327/0.9681 0.1008/0.6666 0.0663/0.8720 0.0304/0.9789

Fig. 5(d) 0.0606/0.9476 0.1206/0.7062 0.0890/0.8745 0.0444/0.9757

Fig. 13 Reconstructed error (× 5) using 2D Random under-sampling, with 15% sampled data in Fig. 7(a1-a2), and 26% sampled data in Fig. 7(b1-
b4). Rows 1–6 are reconstruction errors correspond to multi-contrast images shown in Figs. 7(a1-a2, b1-b4) respectively. Columns 1–4 denote the
results obtained from GBRWT, JSIDWT, JBCS and JGBRWT respectively
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deteriorated. RLNE obviously increased in sparse re-
construction of misaligned multi-contrast images.
Improved image reconstruction is expected by in-
corporating the registration into image reconstruc-
tion process as it was done in [6], which would be
interesting as a future work.

Computation complexity
The main step of numerical algorithm to solve the
proposed joint reconstruction problem include a soft
thresholding to solve α and a one-step computation to
solve x, which is with the same computation complexity
as single contrast image reconstruction, but with more
data to compute, and thus no obvious additional compu-
tational burden.
Program at our platform (E5–2637 v3 (3.5G Hz) *2

CPU, 8 GB memory) shows that, the SIDWT-based sin-
gle image reconstruction need 20 s, and SIDWT-based
joint reconstruction need 100 with 4 different contrast
images at low sampling rate. The GBRWT-based single
image reconstruction need 200 s and GBRWT-based
joint reconstruction need 103 s with 4 different contrast
images at low sampling rate.

Experiment with noise
Multi-contrast images in Fig. 7(A) in the manuscript
are used in noise experiment. Noisy data are
simulated by adding Gaussian white noise with
variance σ2 = 0.02 on real and imaginary part of k-
space data. Figure 17 demonstrate that the proposed
method outperforms the compared ones in preserving
image structures as well as removing noise. According
to Table 7 the proposed method achieves lowest
RLNEs, highest MSSIMs and highest SNRs. The sig-
nal to noise rate (SNR) is defined as SNR = 10log10(μ/
σ), where u is the mean of image density and δ is the
standard deviation of the noise extracted from the
image background.

Parameters
Two noise level are considered (Gaussian white noise
with variance σ2 = 0.02 and σ2 = 0.03) in testing λ. The
optimal λ for σ2 = 0.02 and σ2 = 0.03 are 600 and 400
respectively on the tested data according the curve
shown in Fig. 18.
The parameters of GBRWT include patch-size and de-

composition levels, which have been discussed in [7].
The suggested patch-size in GBRWT are from 4 × 4 to
7 × 7, and suggested decomposition level is 3–5 level.
We use the patch-size 7 × 7 and do 5 level decompos-
ition in this experiment.

Table 5 RLNE/MSSIM for the reconstruction using 15%
randomly sampled k-space data of Fig. 7(A) and Fig. 7(B)

Images GBRWT JSIDWT JBCS JGBRWT

Fig. 7(a1) 0.0537/0.9526 0.0735/0.9222 0.0973/0.8220 0.0515/0.9562

Fig. 7(a2) 0.0735/0.9563 0.0957/0.9231 0.1097/0.8480 0.0722/0.9589

Fig. 7(b1) 0.0844/0.8820 0.1315/0.7739 0.1366/0.7129 0.0820/0.8955

Fig. 7(b2) 0.0935/0.8883 0.1278/0.8065 0.1302/0.7698 0.0817/0.9142

Fig. 7(b3) 0.1327/0.8611 0.1691/0.7821 0.1707/0.7411 0.1184/0.8876

Fig. 7(b4) 0.1624/0.8481 0.2158/0.7544 0.2054/0.7602 0.1558/0.8688

Fig. 14 RLNEs evaluation at various sampling rates. a and b display the RLNEs with regard to the fully sampled data shown in Figs. 5(b) and (d)
under Cartesian under-samplings

Table 6 RLNE/MSSIMs under same sampling patterns (sampling
rate 22%)

Images GBRWT JSIDWT JBCS JGBRWT

Fig. 5(a) 0.0705/0.9305 0.1683/0.6858 0.1019/0.7422 0.0420/0.9760

Fig. 5(b) 0.0986/0.9322 0.2308/0.6536 0.1362/0.7371 0.0696/0.9661

Fig. 5(c) 0.0412/0.9309 0.1340/0.6505 0.0540/0.7768 0.0248/0.9788

Fig. 5(d) 0.0563/0.9366 0.1382/0.7036 0.0635/0.8190 0.0331/0.9796
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Fig. 15 Effect of reference images. a multi-contrast images (contrast 1–4 are arranged from left to right, from top to bottom); b average reconstruction
RLNEs of multi-contrast images in JGBRWT using different references and in GBRWT. Note: JGBRWT1 denote the JGBRWT using image of contrast 1 as
reference, and so on

Table 7 SNR/MSSIM/RLNEs in noise experiment with 27% sampled data

Images GBRWT JSIDWT JBCS JGBRWT

Fig. 7(a1) 18.59/0.9108/0.0814 15.51/0.7977/0.1161 14.28/0.7168/0.1337 19.58/0.9247/0.0726

Fig. 7(a2) 15.74/0.9031/0.1179 14.10/0.7845/0.1424 12.94/0.7012/0.1627 16.61/0.8241/0.1067

Fig. 16 Joint sparse reconstruction with aligned and misaligned multi-contrast images at sampling rate 16%. (a)-(b) are aligned fully sampled images;
(c)-(d) are reconstruction with RLNE = 0.1016 and RLNE = 0.0667, respectively; (e)-(f) are misaligned fully sampled images; (c)-(d) are reconstruction with
RLNE = 0.1277 and RLNE = 0.1071, respectively
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Fig. 17 Noisy experiment (with 27% sampled data) under Gaussian white noise with variance σ2 = 0.02. Rows 1–2: reconstructed images; Rows 3–4:
magnitude errors (× 5)

Fig. 18 The optimal λ under different noise levels. a-b are RLNE curves for each contrast image. Note: Two contrast images under 1D under-sampling
pattern at sampling rate 27% are reconstructed using the proposed JGBRWT
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Conclusions
A new approach is proposed to simultaneously explore
the adaptive sparse image representation under graph-
based redundant wavelet transform and the joint sparse
reconstruction of multi-contrast MRI images. Experi-
mental results in synthetic and in vivo MRI data demon-
strate that the proposed method can achieve lower
reconstruction errors than the compared methods. With
this high quality image reconstruction method, it is pos-
sible to achieve the high acceleration factors by explor-
ing the complementary information provided by multi-
contrast MRI.
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