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Abstract

Background: Quantitative measurement procedures need to be accurate and precise to justify their clinical use.
Precision reflects deviation of groups of measurement from another, often expressed as proportions of agreement,
standard errors of measurement, coefficients of variation, or the Bland-Altman plot. We suggest variance component
analysis (VCA) to estimate the influence of errors due to single elements of a PET scan (scanner, time point, observer,
etc.) to express the composite uncertainty of repeated measurements and obtain relevant repeatability coefficients
(RCs) which have a unique relation to Bland-Altman plots. Here, we present this approach for assessment of intra-
and inter-observer variation with PET/CT exemplified with data from two clinical studies.

Methods: In study 1, 30 patients were scanned pre-operatively for the assessment of ovarian cancer, and their scans
were assessed twice by the same observer to study intra-observer agreement. In study 2, 14 patients with glioma were
scanned up to five times. Resulting 49 scans were assessed by three observers to examine inter-observer agreement.
Outcome variables were SUVmax in study 1 and cerebral total hemispheric glycolysis (THG) in study 2.

Results: In study 1, we found a RC of 2.46 equalling half the width of the Bland-Altman limits of agreement. In study 2,
the RC for identical conditions (same scanner, patient, time point, and observer) was 2392; allowing for different
scanners increased the RC to 2543. Inter-observer differences were negligible compared to differences owing to other
factors; between observer 1 and 2: −10 (95 % CI: −352 to 332) and between observer 1 vs 3: 28 (95 % CI: −313 to 370).

Conclusions: VCA is an appealing approach for weighing different sources of variation against each other, summarised
as RCs. The involved linear mixed effects models require carefully considered sample sizes to account for the challenge
of sufficiently accurately estimating variance components.

Keywords: Bland-Altman limits of agreement, Intra-observer, Inter-observer, Intraobserver, Interobserver, Intra-rater,
Inter-rater, Repeatability coefficient, Sample size, Standardised uptake value
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Background
Quantitative PET measurements
Molecular imaging is done by hybrid positron emission
tomography/computed tomography (PET/CT) and PET/
magnetic resonance imaging (MRI). The vast majority of
PET scans worldwide is made with the glucose analogue
18F-fluorodeoxyglucose (FDG) meaning that recorded
tracer uptake corresponds to regional glucose metabo-
lism. This makes FDG-PET imaging an extremely useful
tool in cancer since (a) malignant cells have a higher
energy turnover than non-malignant cells [1, 2] and (b)
cancers vary geno- and phenotypically from primary
tumour to regional and distant metastases which calls
for generic rather than very specific tracers [3]. A popu-
lar measure of tumour uptake is the standardised uptake
value (SUV) which is the ratio of recorded radioactivity
in voxels of interest (numerator) and an assumed evenly
distributed whole-body concentration of tracer (denom-
inator). Several variants of SUV are in play, comprising
SUVmax, i.e., the maximal uptake in a single voxel
within a given region of interest (ROI), and SUVmean,
i.e., the average tracer uptake across all pixels within a
given 3-dimensional ROI [4, 5].

Nomenclature and concept
Terms used in agreement and reliability studies are
applied ambiguously in practice (see Appendix for a
glossary). Agreement measures the (absolute) closeness
between readings and can be used to express accuracy
and precision. Accuracy refers to deviation of a measure-
ment from the true value of the quantity being measured
(if available), while precision reflects deviation of groups
of measurement from another. Since precision is a mat-
ter of closeness of two or more measurements to each
other rather than to a standard value, it is possible for a
group of values to be precise without being accurate, or
to be accurate without being precise (see Fig. 1).
In biological research where nothing can be consid-

ered absolutely and exactly correct as in physical science,
accuracy of a new measurement procedure is deemed
present if the principle of measurement is sound and
series of measurements do not deviate inappropriately
much from a predefined standard or series of measure-
ments made by an accepted reference method. What
limit of deviation is acceptable must be arbitrarily defined
a priori. Precision is usually calculated and discussed in
terms of standard deviations and coefficients of variation
(CV), proportions of agreement, standard errors of meas-
urement, and Bland-Altman plots with respective limits
of agreement [6]. Zaki and colleagues concluded in their
systematic review on agreement studies published between
2007 and 2009 that the Bland-Altman approach was
by far the most frequently used (178 studies (85 %)),
followed by the Pearson correlation coefficient (27 %) and

the comparison of means (18 %) [7]. Though Bland-
Altman plots were proposed for the comparison of two
methods of measurement [8–10], they were also valuable
when comparing two observers (assessing inter-observer
variability) or repeated measurements made by the same
observer (assessing intra-observer variability). However,
the Bland-Altman approach was not intended for assess-
ment of inter-observer variability with more than two
observers, nor was it designed to study single sources of
variation in the data. Applying instead the concept of
variance component analysis (VCA), we estimated the
variances due to errors caused by separate elements of a
PET scan (tracer, scanner, time point, patient, observer, etc.)
to express the composite uncertainty of repeated measure-
ments and obtain relevant repeatability coefficients (RCs),
which have a unique relation to Bland-Altman plots in
simple test-retest settings: the RC is the limit below which
95 % of differences will lie, holding different sources of
variation fixed.
Reliability concerns the ability of a test to distinguish

patients from each other, despite measurement error,
while agreement focuses on the measurement error itself
[11]. Reliability assessment is well established and usu-
ally done by means of intraclass correlation coefficients
(ICC) [12, 13].

Purpose of this study
The aims of this paper are as follows:

� to apply VCA to the most simple setting of
agreement assessment in PET studies – the study of

Fig. 1 Accuracy and precision in terms of systematic and random
variation, respectively, around the expected value. With kind
permission from Springer Science + Business Media: Statistics for
Non-Statisticians, Chapter 6: Error Sources and Planning, 2011, p.96,
Birger Stjernholm-Madsen, Fig. 6.1.
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intra-observer variability when differences between
paired measurements are investigated;

� to apply VCA in settings, in which different sources
of the observed variation in the data shall be
accounted for, like observer, time point, or scanner.

The first point will naturally lead to a connection
between VCA and Bland-Altman limits of agreement,
which, in turn, are directly linked to the term RC: whereas
Bland-Altman limits span the average of all differences
between pairwise measurements +/− 1.96 times the stan-
dard deviation of these differences (SDdiff ), the RC equals
2.77 times the within-subject standard deviation (Sw);
half the width of the Bland-Altman limits coincides
with the RC in simple settings because within-subject
standard deviation is then synonymous with standard
error of measurement (SEM):

2:77� Sw ¼ 2:77� SEM ¼ 1:96
ffiffiffi

2
p � SDdiff

ffiffi

2
p ¼ 1:96� SDdiff .

The second point will demonstrate that the RC can be
used more widely, as it is still estimable in more challen-
ging settings and can serve as an evaluation tool when
assessing the magnitude of various possible sources of
variation observed in the data. In the following, we
exemplify VCA by means of two studies conducted at
our institution and discuss sample size considerations
from a general point of view.

Methods
Study 1
At our institution, we are conducting a clinical study
called Dual Time PET/CT in the Preoperative Assessment
of Ovarian Cancer since summer 2013. Its primary
hypothesis is that dual time FDG-PET/CT performed
at 60 and 180 min. after injection of tracer will increase
the diagnostic accuracy of FDG-PET/CT (routinely per-
formed at 60 min.) in the preoperative assessment of
resectability (provided optimal debulking is achievable).
The target population consists of patients with suspicion
of ovarian cancer in whom the clinical suspicion of malig-
nancy is based on initial physical (including pelvic) exam-
ination, blood tests including CA-125, and transvaginal
ultrasound. Patients are referred to the Department of
Gynaecology and Obstetrics at our institution from other
hospitals in the region of Southern Denmark or the region
of Zealand and from private specialists and general prac-
titioners. Inclusion is expected to go on until summer
2018 with a frequency of 1–2 patients per week. A total
number of 180 patients in the study is aimed for, from
which around 50 have been included by 1st September
2015. The assessment of the PET/CT scans performed
at 60 min. in the first 30 patients was done twice and
the second time in random sequence by author MHV
in May and September 2015 in order to address the

intra-observer repeatability of the post imaging process.
SUVmax (g/ml) was measured in the primary ovarian
lesion when possible to identify; otherwise, the SUVmax
in peritoneal carcinosis was used.
PET/CT scans were acquired on one of four available

scanners: GE Discovery VCT, RX, 690, or 710 (GE Health-
care, Milwaukee, WI, USA). Patients were scanned ac-
cording to guidelines [14], and the analysis of PET/CT
including SUV measurements was done on a GE Advan-
tage Workstation v. 4.4 by an experienced nuclear medi-
cine physician with 10 years of experience with PET/CT.
The scans were assessed in fused axial, coronal, and sagit-
tal planes using the default color scale “hot iron”. Due to
often large, heterogeneous ovarian tumours, SUVmax was
assessed to be more representative of malignant metabo-
lism than SUVmean. When possible, the ovarian tumour
was identified on the fused PET/CT images. A circular
ROI was placed on the axial slices in the area with visually
highest uptake making sure to exclude physiological
uptake, for instance, nearby the bladder. If the highest
uptake area was not clearly identified visually, multiple
ROIs were drawn covering all areas with high uptake, and
the maximum SUV lesion was used. When a primary
ovarian lesion was not identified on PET/CT, a peritoneal
lesion with high uptake was identified in a similar manner.
The assessment and placement of ROIs are challenging
because of the heterogeneity of primary tumour and
multifocal peritoneal carcinosis, often accompanied by
physiological uptake in adjacent organs such as colon and
urine bladder/ureters and associated ascites.

Study 2
The second study focuses on diaschisis in gliomas,
where diaschisis means a brain dysfunction remote from
a focal brain lesion. A consecutive series of 14 glioma
patients, referred from our Department of Neurosurgery
with suspicion of cerebral malignancy (as assessed by
histopathological findings of biopsy samples and MRI
results from the clinical routine), underwent FDG-PET/
CT examinations from 2012 to 2015. The patients were
followed throughout the entire treatment course for
1 year or until death occurred, and FDG-PET/CT scans
were done at up to five times: 1) at baseline (before treat-
ment); 2) post operation; 3), 4) and 5) follow-up during
chemotherapy or no treatment. Each patient was assigned
to one of two scanners (GE Discovery 690 or 710, GE
Healthcare, Milwaukee, WI, USA) at each time point, and
a total of 49 FDG-PET/CT scans were collected. Using
dedicated 3D-segmenatation software (ROVER version
2.1.26, ABX GmbH, Radeberg, Germany), total hemi-
spheric glycolysis (THG) was assessed in the ipsilateral and
contralateral hemisphere relative to the primary tumour.
Two inexperienced medical students (observers 1 and 2)
and one experienced neuro PETclinician (observer 3) drew
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ROIs. THG is defined as the product of the segmented
metabolic volume and the mean SUV in this volume
(cm3 × g/ml), encompassing all voxels in one cerebral
hemisphere; iterative thresholding with 40 % cutoff from
SUVmax was applied. In the following, only THG mea-
surements in the ipsilateral hemisphere are used.

Statistical analysis
The aim of VCA, which builds upon a linear mixed ef-
fects model, is to split the observed variance in the data
and distribute its parts to factors of the statistical model
[15]. The dependent variable was SUVmax in study 1
and THG in study 2. In study 1, we treated ‘reading’ (1st
vs. 2nd) as fixed factor and ‘patient’ as random factor,
i.e., we considered patients to be merely representatives
of the target population, whereas the factor ‘reading’ re-
ferred to two concrete readings which we would like to
make inferences about. In study 2, both ‘observer’ and
‘time point’ were considered fixed effects, whereas ‘pa-
tient’ and ‘scanner’ were treated as crossed random ef-
fects since the same images were evaluated by different
observers. Using the estimated within-subject variance
from these models, RCs were derived. The RC is the
limit within which 95 % of differences between two
measurements made at random on the same patient will
lie in absolute terms, assuming differences to have an
approximately normal distribution; the RC equals 2.77
times the estimated within-subject standard deviation
[10, 16, 17]. In simple settings, such as our study 1, half
the width of the Bland-Altman limits coincides with the
RC. In study 2, we derived the RCs for repeated mea-
surements for (a) the same patient at the same time
point on the same scanner by the same observer and (b)
the same patient at the same time point by the same ob-
server, but studied by different scanners.
Data from study 1 were displayed graphically by Bland-

Altman plots with respective limits of agreement which
are defined by the mean estimated difference between
readings +/− 1.96 times the standard deviation of the
differences between readings. These plots were supple-
mented by lines stemming from linear regressions of the
differences on the averages, also called the Bradley-Black-
wood procedure [18], in order to support visual as-
sessment of trends over the measurement scale. Data
from study 2 were displayed by line plots over time by
observer.
The level of significance was set to 5 %. Ninety-five

percent confidence intervals (95 % CI) were supple-
mented where appropriate. All analyses were performed
by using STATA/MP 14.1 (StataCorp LP, College Station,
Texas 77845 USA). The package concord [19] was used
for the generation of Bland-Altman plots. The STATA
source code of VCA is accessible as Additional file 1.

Results
Study 1
The differences between the two readings of SUVmax
in study 1 were all less than one in absolute terms,
apart from those for patient no. 3, 5, 10, 23, and 26
(Additional file 2). The estimated mean difference be-
tween reading 1 and reading 2 was 0.43 (95 % CI: −0.02
to 0.88; Table 1), and Bland-Altman limits of agreement
were −2.03 and 2.89. According to the respective Bland-
Altman plot (Fig. 2, upper panel), the variance of the dif-
ferences seemed to be quite homogenous across the
whole range of measured values, but an increasing trend
with increasing average of measurements was visible.
However, this trend appeared to be triggered by one out-
lier, the removal of which would mean that the trend ac-
cording to the Bradley-Blackwood regression line would
disappear (Fig. 2, lower panel). Removal of this outlier
would further nearly halve the estimated mean difference
between readings (0.24) and lead to a smaller Bland-
Altman band (−1.13 to 1.60).
According to VCA, patient and residual variance were

estimated to 47.53 and 0.787, respectively, mirroring the
between-patient variance to be the dominating source of
variation in the data. The RC for a new reading of the
same image by the same observer equalled 2.77 times
√0.787 = 2.46, which coincided with one half of the
Bland-Altman band (here: 1.96 times 1.255 [not shown
elsewhere]).

Study 2
THG measurements by all three observers had a median
value of 2468.8 and ranged from 124.3 to 7509.4. The
visual display of the data by patient and observer indi-
cated good agreement between the three observers,
except for patient no. 10 in whom one observer measured
way below the other two observers at the second time
point (Fig. 3). Note that only patients 1, 2, 4, and 5 had
observations on all five time points, whereas no scan was
available for patient 3 at time point 4 due to technical
issues, and patients 6–14 were only scanned up to three
times as they died during the study. The VCA revealed
negligible mean differences in THG recorded by the three
observers, but huge imprecision of estimates: observer 1
vs. 2: −10.03, 95 % CI: −351.91 to 331.85; observer 1 vs. 3:
28.39, 95 % CI: −313.49 to 370.27 (Table 2). Regarding

Table 1 Results from the linear mixed effects model (study 1)

Component Factor level Estimate 95 % CI P-value

Reading 1st (reference)

2nd 0.43 −0.02 to 0.88 0.06

Constant 8.60 6.03 to 11.16 <0.0001

Patient variance 47.53 28.28 to 79.86

Residual variance 0.787 0.470 to 1.317
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changes from baseline, only measurements at the first
time point after baseline (post operation) were statistically
significantly decreased by −490.51 (95 % CI: −859.78 to
−121.24; p = 0.009). Patient, scanner, and residual variance
were estimated as 345668.5, 97156.9, and 745438.9, re-
spectively. The RC for a new assessment of the same pa-
tient made at the same time point on the same scanner by
the same observer equalled 2.77 times √745438.9 =
2391.6; the RC for a new assessment of the same patient
made at the same time point by the same observer, but
using a different scanner increased to 2.77 times
√(745438.9 + 97156.9) = 2542.7.

Discussion
In agreement studies with sole focus on the difference
between paired measurements, as in our study 1, the
data are ideally displayed by means of Bland-Altman
plots, possibly optimised by using log transformation of
the original data and accounting for heterogeneity and/
or trends over the measurement scale [10, 20]. In study
1, we observed the duality between Bland-Altman limits
of agreement on the one hand and the corresponding
RC on the other hand. Actually, various authors of
recently published agreement studies defined the repeat-
ability coefficient (or coefficient of repeatability) as 1.96
times the standard deviation of the paired differences
[21–25] which is algebraically the same as 2.77 times the
within-subject standard deviation in simple settings as

our study 1. Lodge et al. referred to the RC as 2.77 times
the within-subject standard deviation [26].
Modelling a more complex situation, in which both

fixed and random effects shall be accounted for, leads
naturally to a mixed effects model as in our study 2.
Here, we applied VCA in order to provide relevant RCs.
However, the estimation of both fixed effects and random
components was prone to large uncertainty which was
reflected by the widths of respective 95 % CIs. In general,
the estimation of variance components requires larger
sample sizes as the estimation of fixed effects, since the
former relates to second moments and the latter to first
moments of random variables [27]. How many observa-
tions suffice to demonstrate agreement?.
An ad hoc literature search in PubMed (using the search

term ((reproducibility OR repeatability OR agreement))
AND SUV) for the period 1st January 2013 to 30th June
2015 revealed 153 studies with sample sizes between eight
[28] and 252 [29], where most studies included up to
40 patients. Despite the increased interest in the conduct
of agreement and reliability studies over recent decades,
investigations into sample size requirements remain
scarce [30, 31]. Carstensen reckoned that little informa-
tion is gained in a method comparison study beyond the
inclusion of 50 study subjects, using three repetitions [20].
In the context of multivariable regression modelling,
10 to 20 observations should be available per continu-
ous variable and level per categorical variable in order

Fig. 2 Bland-Altman plots for study 1 (upper panel: N = 30; lower panel: N = 29). Graphical display of the means against their respective paired
differences, the Bland-Altman limits of agreement (red lines), the estimated mean difference (purple line), the reference line of perfect average
agreement (line at y = 0), and the regression line according to the Bradley-Blackwood procedure (green line). In the lower panel, one outlier
was excluded.
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to fit a statistical model, which results in sufficiently
accurately estimated regression coefficients [32–37]. Level
refers here to a category of a categorical variable; for
instance the variable ‘time point’ in our study 2 had 5
levels, meaning five realised time points. The abovemen-
tioned rule-of-thumb can lead to large sample sizes in an
agreement study, even though only few explanatory fixed
and random variables are involved. In our study 2, we
employed 10 levels all in all (five time points, three
observers, and two scanners), leading to 10 times 20 = 200
observations. Unfortunately, we could only gather around
150 observations due to slow patient accrual, but we
learned that at least 20 observations should be employed
per continuous variable and level of a categorical variable
in an agreement study in order to account for the chal-
lenge of sufficiently accurately estimating variance com-
ponents. Note that subject-observer interaction, i.e., the
extra variation in a subject due to a specific observer, can
only be isolated when having repeated measurements per
observer [16].

Fig. 3 Line plots for study 2 by patient and observer. Display of individual measurements over time by patient (N = 14), indicating the three
observers by different colours. The first row consists of plots for patients 1 to 3, the second row for patients 4 to 6 and so on. Note that the scan
for patient 3 at time point 4 was unavailable due to a technical error.

Table 2 Results from the linear mixed effects model (study 2)

Component Factor level Estimate 95 % CI P-value

Observer 1st (reference)

2nd −10.03 −351.91 to 331.85 0.95

3rd 28.39 −313.49 to 370.27 0.87

Time point Baseline (reference)

Post operation −490.51 −859.78 to −121.24 0.009

1. follow-up 185.90 −210.54 to 582.33 0.36

2. follow-up −89.89 −692.92 to 513.13 0.77

3. follow-up −389.29 −937.38 to 158.80 0.16

Constant 2675.03 2046.19 to 3303.86 <0.0001

Patient variance 345668.5 127739.2 to 935395.8

Scanner variance 97156.9 2976.2 to 3171673

Residual variance 745438.9 582229.8 to 954398.3
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We understand repeatability as an agreement and not
a reliability assessment (see Appendix), whereas the ICC
happens to be used as repeatability assessment on occa-
sions [38, 39]. Since the ICC is heavily dependent on
between-subject variation and may produce high values
for heterogeneous patient groups [30, 31], it should be
used exclusively for the assessment of reliability. We
hope to contribute to a more jointly agreed usage of
terms in the future, being in line with the published
guidelines for reporting reliability and agreement studies
[6]. Further, we reckon that the biggest challenge most
likely is a clear understanding of which exact question a
researcher seeks answered, before undertaking an agree-
ment or a reliability study. Guyatt, Walter, and Norman
pointed out that reliability indices (like ICC) are used for
discriminative purposes, whereas agreement parameters
(like RC) are used for evaluative purposes [40].The
former focuses on a test’s ability to divide patients into
groups of interest, despite measurement error, whereas
the latter relies on the measurement error itself; with
small measurement errors, it is possible to detect even
small changes over time [11].
Moreover, the choice of independent variables of the

linear mixed effects model (i.e., the potential sources of
variation in the data) and the decision to treat a factor
as fixed or random is far from trivial and requires thor-
ough planning in order to reflect the clinical situation in
the best possible, meaning most appropriate, way. Is the
assessment of inter-observer variability limited to only
few observers, as these are the only ones handling cases
in daily routine (treating ‘observer’ as fixed effect), or
is an observer merely a representative of the pool of
several potential observers (treating ‘observer’ as random
effect)? In the former case, every observer reads all scans;
in the latter case, every observer assesses only a portion
of all scans, to which he/she gets randomly assigned,
which in turn distributes the assessment work on several
observers (thereby easing data collection) and increases
generalisability.
Apart from factors like observer, time point, and scan-

ner, FDG PET quantification itself is affected by technical
(e.g. relative calibration between PET scanner and dose
calibrator, paravenous administration of FDG PET), bio-
logical (e.g. blood glucose level; patient motion or breath-
ing), and physical factors (e.g. scan acquisition parameters,
ROI, blood glucose level correction) [41]. In our studies,
intra- and inter-observer agreement was assessed with
respect to the post-imaging process; therefore, technical,
biological, and most physical factors came not into play,
whereas size and type of ROI used are observer-specific
and, thus, cannot be modelled separately from the factor
‘observer’. When investigating day-to-day variation of
the scans and dealing with multi-centre trials, the PET
procedure guideline [5] should be adhered to in order to

maintain accuracy and precision of quantitative PET mea-
surements best possible. The technical, biological, and
physical factors which were discussed by Boellard [41],
can, in principle, partly be included to a statistical model
as explanatory variables; however, only those should be
considered that justify a respective increase in sample size
(see discussion on appropriate sample sizes above).
The guidelines for reporting reliability and agreement

studies [6] include 15 issues to be addressed in order to
improve the quality of reporting. Doing so can result in
separate publications on agreement and/or reliability
apart from the main study, as Kottner et al. put it [6]:
“Studies may be conducted with the primary focus on
reliability and agreement estimation itself or they may be
a part of larger diagnostic accuracy studies, clinical trials,
or epidemiological surveys. In the latter case, researchers
report agreement and reliability as a quality control,
either before the main study or by using data of the main
study. Typically, results are reported in just a few sen-
tences, and there is usually only limited space for report-
ing. Nevertheless, it seems desirable to address all issues
listed in the following sections to allow data to be as
useful as possible. Therefore, reliability and agreement
estimates should be reported in another publication or
reported as part of the main study.”

Conclusions
Intra-observer agreement is excellently visualised with
Bland-Altman limits of agreement, which in turn can be
directly linked to RCs derived from VCA. Incorporating
several sources of potential variation in the data (like using
different observers) leads to extended models, from which
appropriate RCs can be derived for the assessment of
agreement. It is difficult to specify the required sample
sizes for such linear mixed effects models, but as rule-of-
thumb 20 observations should be included per continuous
variable and factor level of categorical variable in the sta-
tistical model.

Appendix
The two most prominent authorities on how to define
terms like accuracy or precision in biomedical research
are the International Organization for Standardization
(ISO) and the US Food and Drug Administration (FDA)
[42, 43]. Barnhart, Haber, and Lin discussed thoroughly
the differences in definitions and proposed a standar-
disation [12] which we adopted due to its focus on bio-
medical application and, hence, its appropriateness for
molecular imaging studies.

� Accuracy vs. precision: Accuracy and precision have
historically been used to measure systematic bias and
random errors around the expected (true) value,
respectively (see Fig. 1). Using accuracy as term for
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systematic bias, a ‘true sense of accuracy’ reflects a
systematic shift from the truth if a reference is
available, whereas a ‘loose sense of accuracy’ means a
systematic shift between measurements if a reference
is unavailable. In contrast, precision describes the
closeness of agreement between independent test
results under prescribed conditions. The term
precision is intertwined with the terms repeatability
and reproducibility (see below).

� Agreement: Measuring closeness between readings,
agreement can be considered to be used in a broader
sense which comprises both accuracy and precision.

� Repeatability vs. reproducibility: Repeatability
ascertains the closeness of agreement between
measures under the same condition, i.e., using the same
laboratory, employing the same observer and the same
equipment (PET scanner, image reconstruction
software), within short intervals of time. Reproducibility
targets the closeness of agreement between measures
under all possible conditions on identical subjects, i.e.,
using different laboratories, observers, or PETscanners,
or assessing day-to-day variation.

� Validity vs. reliability: An assessment of validity
requires a reference standard and necessitates both
accuracy and precision; for details on several types
of validity (face, content, criterion, and construct
validity), see for instance [44]. With respect to
clinical trials, internal and external validity can be
distinguished. The former assesses what can be
accomplished with, for instance, a diagnostic test in
a clinical trial setting under restricted conditions,
whereas the latter reflects a diagnostic test’s value in
daily practice when applied to a broader and less
selected patient population [45]. Reliability originated
from test theory and was defined as the patient-
specific score variance, divided by the observed total
score variance [46, 47]. It is, therefore, interpreted as
the proportion of the observed variance that is ex-
plained by the true score variance. In terms of the
commonly used ICC, it represents the fraction of the
variability between study subjects (patients) divided
by the sum of between-subjects variability and a
measurement error. Reliability addresses the question
of how well patients can be distinguished from each
other, despite measurement error [11].
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