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Background: Positron emission tomography scanners collect measurements of a patient’s in vivo radiotracer
distribution. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer),
which is introduced into the body on a biologically active molecule, and the tomograms must be reconstructed from
projections. The reconstruction of tomograms from the acquired PET data is an inverse problem that requires
regularization. The use of tightly packed discrete detector rings, although improves signal-to-noise ratio, are often
associated with high costs of positron emission tomography systems. Thus a sparse reconstruction, which would be
capable of overcoming the noise effect while allowing for a reduced number of detectors, would have a great deal to

Methods: In this study, we introduce and investigate the potential of a homotopic non-local regularization
reconstruction framework for effectively reconstructing positron emission tomograms from such sparse

Results: Results obtained using the proposed approach are compared with traditional filtered back-projection as
well as expectation maximization reconstruction with total variation regularization.

Conclusions: A new reconstruction method was developed for the purpose of improving the quality of positron
emission tomography reconstruction from sparse measurements. We illustrate that promising reconstruction
performance can be achieved for the proposed approach even at low sampling fractions, which allows for the use of
significantly fewer detectors and have the potential to reduce scanner costs.

Background

The concept of positron emission tomography (PET)
imaging revolves around the measurement of a patient’s
in vivo radiotracer distribution. The system detects
pairs of gamma rays emitted indirectly by a positron-
emitting radionuclide (tracer), which is introduced into
the body via biologically active molecules. As such, PET
imaging can be described via a line-integral model of
acquisition [1]. PET data are collected as projections in
sinograms or listmode format [2]. The raw data collected
by a PET scanner are a list of ‘coincidence events’ repre-
senting near-simultaneous detection, each coincidence
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event represents a line in space connecting the two
detectors along which the positron emission occurred.
While one can employ the inverse Radon transform to
recover tomograms from acquired PET data, such an
approach can be unstable, particularly when dealing with
noise-contaminated data [3]. Therefore, the filtered back
projection algorithm, which is a stabilized and discretized
version of the inverse Radon transform, is commonly
used in practice [3].

There are two common approaches for tomographic
reconstruction: i) filtered back projection (FBP) [4], and
ii) iterative expectation-maximization (EM) [5-7]. FBP has
been widely used to reconstruct tomograms from the pro-
jections in clinical settings due to its overall simplicity and
low computational complexity. However, shot noise in the
raw data is prominent in the reconstructed tomograms
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and areas of high tracer uptake tend to form streaks across
the tomogram.

Iterative algorithms for reconstructing tomograms
from acquired PET data take into account the statistical
nature of the acquired projection data and incorporate
the physical model into reconstruction. These algo-
rithms compute an estimate of the likely distribution
of annihilation events that led to the measured data,
based on statistical principles [8]. The advantage is a
better noise profile and resistance to the artifacts com-
mon with FBP, but are typically more computationally
intensive.

Recently, wavelet-based methods [3,8-10] have also
been proposed for solving this inverse problem in
PET reconstruction. Wavelet-based methods have been
applied in research literature in the post-processing
stage to suppress artifacts in the reconstructed tomo-
grams [3]. Another attractive approach to reconstruct-
ing tomograms from PET data using wavelets is to
incorporate wavelets into the reconstruction process
itself [9], where an Lj-regularization constraint is
used to enforce sparsity in the wavelet domain. For
example, wavelet regularization using exponential-spline
wavelets has been shown to produce good reconstruction
results [10].

More recently, the concept of compressive sensing [11]
has offered great potential for signal recovery with very
high accuracy through sparse measurements acquired at
very low sampling fractions. Researchers have also begun
to explore the use of compressive sensing for image recon-
struction in various medical modalities [12]. To date, most
sparse medical image reconstruction algorithms have
focused on solving the sparse reconstruction problem via
L1 minimization.

The main contribution of this paper is to introduce
and investigate the potential of a homotopic non-local
regularization (HNLR) reconstruction framework for the
reconstruction of PET tomograms from sparse measure-
ments, with the aim to achieve high reconstruction qual-
ity. The ability to achieve strong reconstruction results
at low sampling fractions can be very helpful for reduc-
ing the number of detectors needed in a PET system (7],
which in effect helps can lead to reduced scanner costs
and potentially improve adoption of PET in developing
countries.

The rest of the paper is organized as follows. First,
the underlying methodology behind the proposed use
of a homotopic non-local regularization (HNLR) recon-
struction framework for the reconstruction of PET
tomograms from sparse measurements is described in
Section “Methods”. The experimental results are pre-
sented in Section “Results and discussion”. Finally, con-
clusions are drawn and future work is discussed in
Section “Conclusion”.
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Methods

The underlying methodology behind the proposed
approach to reconstructing PET tomograms from sparse
measurements can be explained as follows. The underly-
ing imaging system can be represented with the following
linear relationship

P(a,s) = Rf (x) (1)

where P is the set of sampled measurements, s is the dis-
tance of straight line L from the origin, « is the angle
that the normal vector to L makes with the x axis, R is
the Radon transform, and f is the unknown tomogram.
The goal of reconstruction is to use the sampled mea-
surements P (projections in the Radon transform domain
through the object) to find the tomogram f in image
space.

L, minimization for sparse reconstruction

In PET, the number of projections is related to the number
of detectors. Therefore, taking a high number of projec-
tions requires tightly packed discrete detector rings [7],
which could lead to high scanner costs. Instead, our goal is
to measure only a fraction of the projections, hence reduc-
ing the number of detectors needed, and still be able to get
high quality reconstructions. Consequently, Eq. 1 should
be rewritten as:

fx) =R {DP(a, )} (2)

where R™! is the inverse Radon transform operator and
® is a measurement operator defining which of the sites
are measured (non-measured projection space indices will
be assigned 0 by ®). Our goal is to reconstruct f(x)
from a sparse sampling of P(«,s). With only few mea-
surements made, not all sites are measured, making this
problem an ill-posed inverse problem [13], and as such
there may exist multiple solutions. A common method
to solving this inverse problem is through the use of Ly
minimization:

f@) e arg min | f@)|, st.Rf(x)=®Pa,s)  (3)
(€]

where f (x) is the estimated signal in image space, and
P(a,s) is the estimated signal in projection space. How-
ever, solving the problem in this manner results in sig-
nificant artifacts such as aliasing and blurring in practical
situations [12].

Recently, scientists realized that many signals, such as
PET imagery, possess an inherent sparsity in some sparsi-
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fying transform domain [14]. According to the emerging
theory of compressive sensing [11,15], a better estimate
of f(x) can be obtained by maximizing the sparsity of
the signal in the transform domain and enforcing data
fidelity in projection space domain. One can formulate the
reconstruction problem as a constrained Ly minimization
problem,

f(x) € arg min H Wif(x) ||0 sit. Rf(x) = ®P(r,5)  (4)
f®)

where W is the sparse transform operator. Two commonly
used sparse transform operators are the finite differential
transformation and the wavelet transformation [16].

Unfortunately, solving the Ly problem is essentially NP
hard, and as such is intractable in practice [17]. To address
this problem, pioneering work done by Candes [11] and
Donoho [15] showed that under certain conditions, Ly and
L1 minimization can lead to the same solutions. As such,
one can instead solve the L1 minimization as:

f@) e arfmm |ef@|, st Rf@) = ®Pa,s) (5
(x)

Theoretically, under certain conditions, solving the L;
problem can get exactly the same solution as solving the
Ly problem, although a substantial increase in the number
of measurements is required [12,18].

Typically, a total variation (T'V) penalty [19] is employed
in the L; minimization framework, which is known to
have an edge-preservation effect, and to account for
the unavoidable noise in the measurements, the data
fidelity constraint is typically replaced by a Ly norm
constraint:

f@) € argmin |[Wf )|, + TV (f(x))
f@® (6)

st |Rf(x) — ®P(a,9) |, < €

Homotopic, non-local regularization based reconstruction

There are two fundamental limitations associated with
the reconstruction framework described in Eq. 6 for the
purpose of reconstructing tomograms [20]. First, the use
of a TV penalty can lead to the loss of fine structure at
low sampling fractions [12]. Since PET images are char-
acterized by complex functional process variations, the
TV approach may not be well-suited for reconstructing
these data. Second, as already mentioned, the number
of measurements required for solving the L; problem
can be noticeably higher than that for the Ly problem,
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which is undesirable as it leads to an increased num-
ber of detectors needed. Hence, an alternative recon-
struction strategy that addresses these two problems is
desired.

To achieve the theoretical capability of the constrained
Ly minimization approach without a drastic increase in
the number of measurements, Trzasko et al. [12] intro-
duced a homotopic Ly minimization framework, which
uses an increasing approximation framework to get close
to the Lo minimization problem:

f) € lim arg min p(|¥f (x)],0)
o—0 fx) (7)
st. |Rf(x) — ®P(a,5)], < €

where p is the homotopic approximation of the Lg
norm, which approaches the Ly norm as o approaches
0. Experimental results showed that this strategy is able
to approach the capabilities of the Ly minimization
approach [21], thus addressing the problem pertaining to
the number of measurements required.

To address the problem of detail loss from using
total variation, we instead integrate the concept of non-
local regularization, often used in image processing
for improved detail preservation [19,20,22-24], into the
homotopic Ly minimization framework [25] for the pur-
pose of tomogram reconstruction from sparse PET mea-
surements, as it is well-suited for handling fine structural
details. The proposed homotopic, non-local regulariza-
tion framework for sparse PET reconstruction is formu-
lated as follows:

f(x) € lim arg min n(|®f (%)],0)
st |Rf(x) — ®P(a, )|, < €

where 7 denotes the homotopic non-local regularization
functional:

n(f@Lo)= > Y wxyo) N& —N@)?

x€Q yeN (x)

)

o controls the approximation degree, and w(x,y,0) is
defined as

202 (10)

B { (N(x)—N(y)}
wlx,y,0]=exp——""——
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where N(x) is a neighborhood around x. Essentially, the
idea is to minimize the homotopic non-local regular-
ization function, denoted by n(|®f(x)|,0), at decreas-
ing values of approximation degree, denoted by o, such
that n approximates the Ly norm closer and closer. An
approximate solution of Eq. 8 can be obtained using an
iterative optimization approach, with decreasing values
of o as the number of iterations increases. To reduce
the computation complexity, the neighborhood search
space is limited to a window search around the pixel
to be estimated. The regularization term n(|\Wf(x)|,0) is
designed to efficiently suppress artifacts associated with
incomplete measurements while preserving detail and
structure, and is enforced via steepest descent [26,27],
while the data fidelity term is designed to ensure
that the reconstructed tomogram complies with sam-
pled measurements while accounting for some level of
noise artifacts. The data fidelity term is enforced at
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measured projection space indices at each iteration i as
follows:

Pi(a,s)
Rf;(x) if HRﬁ(x) — ®P(ay5) H2< €

- P(a,s) + (ZH (Rf,‘(x) — <I>P(ot,s)) — 1) 5 if otherwise

(11)

where H(.) is the Heaviside step function and b is the
number of measured projection space indices. The pseu-
docode for the proposed homotopic non-local regularized
reconstruction method is shown in Algorithm 1. Note that
a Ly data term is used here for simplicity in the iterative
optimization realization shown in Algorithm 1, and more
advanced data terms such as the Kullback-Leibler diver-
gence [28,29], which takes better advantage of the Poisson
noise statistics of PET, may be used.

100% sampled

TVR (30%)

than that reconstructed using TVR.

Figure 1 Reconstructed tomograms from simulated phantom using three different reconstruction methods based on 30% sampling. We

can see very clearly that the FBP method leads to considerable artifacts in the reconstructed tomogram, with significant streaking artifacts over both
the background and the phantom details. Both TVR and HNLR methods were able to significantly suppress these artifacts caused due to sampling at
sub-Nyquist sampling fractions. It can also be observed that the details (e.g., dark circles) in the tomogram reconstructed using HNLR appear sharper

FBP (30%)

Proposed HNLR (30%)
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Algorithm 1 Homotopic Non-local Regularized
Reconstruction from Sparse Positron Emission Tomography
Measurements
Require:
sparse PET data in the projection space, Pi(a,s) =
OP(a, 5)
parameters initialization: o1, 04, A, €, 1
Ensure:
reconstructed PET tomogram in image space, f(x)
i=1
P(a,s) = Pi(@,9);
while (0; > oy)and(i < n) do

fix) = R7! {Is(a,s)] < backprojection to image

space

fi) € argmin n(\Vfi(x)|,0;) < homotopic
Si(x)

minimization

HRJ?i(x) — ®P(a,s) H2 < € <« enforce Ly norm

constraint in projection space via Eq. 11
Pis)—Plas)|

i - < ¢ then
e,
0; = 0; * . < decrease approximation degree
end if
P(a,s) = Pi(a, )
i=i+1;
gnd while
fe) =R P

Experiments

Data description

To evaluate the effectiveness of the proposed method,
sparse reconstructions were performed using a simulated
phantom generated using ASIM [30] at 30% sampling
fraction (defined here as the percentage of projection
angles from which measurements are obtained). The sim-
ulated phantom consists of 4 spots of different sizes and
is useful for observing the effects of reduced sampling
on spatial resolution. Also, since the simulated phan-
tom generated using ASIM is contaminated by simulated
Poisson-distributed noise, it is also useful for observing
the performance of the proposed method when faced with
noisy data. Since the total number of projection angles
used in this study is 180 projection angles, that means at
a 30% sampling fraction the number of projection angles
used for sparse reconstruction is 54 projection angles.
Also, the object covers approximately 70% of the field
of view. Furthermore, sparse reconstructions at differ-
ent sampling fractions were performed using three real
PET data sets hosted by Harvard Medical School [31], in
accordance with Harvard Medical School ethics proce-
dures. The PET data sets are acquired with Fluorine-18
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Deoxyglucose (FDG) as the biologically active molecule.
The first PET data set (PET1) is acquired from a 73 year-
old man who sought medical attention due to a grand
mal seizure and progressive speech difficulties, with a
brain biopsy revealing grade II astrocytoma. The sec-
ond PET data set (PET2) was taken from a 53 year-old
man who sought medical attention due to a grand mal
seizure, with a brain biopsy revealing grade IV astrocy-
toma. The third PET data set (PET3) is acquired from a
70 year-old man with mild Alzheimer’s disease about 9
months prior to imaging. The PET data sets are 256 x
256 x 23 voxels. The data sets were forward-projected
from a previous reconstruction obtained via filtered back-
projection (FBP) [2] based on measurements from 100% of
the projection angles in order to obtain projection data for
evaluation.

Implementation

For comparison purposes, the proposed homotopic
non-local regularization (HNLR) algorithm was com-
pared with the standard filtered back-projection (FBP)
algorithm [2], as well as the more advanced iterative
expectation maximization algorithm with total variation
regularization (TVR) algorithm [6]. The standard FBP
algorithm was chosen for baseline comparisons as it is
widely used in clinical settings for its speed and ease of
implementation. The TVR algorithm was chosen as it
is one of the more advanced reconstruction approaches
available for PET reconstruction [6,7]. To allow for quan-
titative assessment, the signal-to-noise ratio (SNR) was

45

Proposed
—TVR
FBP

40

35

30

25¢ 1

Reconstruction SNR

201 8

151 1

10 1 L Il L 1
20 25 30 35 40 45 50

Sample Fraction

Figure 2 Average SNR of three different reconstruction methods
across PET sets, as a function of sampling fraction. The proposed
HNLR method produces reconstructed PET data with higher SNR
values for all levels of sampling fraction when compared to the FBP
method and the TVR method.
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computed for reconstructed data at different sampling
fractions. Furthermore, a qualitative visual assessment
is performed on the reconstructed data to investigate
the reconstruction performance and the preservation of
details achieved using the tested methods. Different sam-
pling fractions were achieved by sampling the projec-
tion angles at evenly spaced intervals. For example, to
achieve a 50% sampling fraction, every other projection
angle from the set of total projection angles was sam-
pled. This methodology was used for all the data sets
and the comparison of all three methods. For this study,
the parameters of the HNLR algorithm were set as fol-
lows as it yielded strong reconstruction performance. The
neighborhood N(x) was chosen as a 9 x 9 neighbor-
hood around x, o1 and o; are set as 20% and 1% of the
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dynamic range in image space, respectively, A is set as
0.8, € is set as 2% of the dynamic range in projection
space multiplied by the number of measured projection
space indices (b), and #n is set as 100 as these param-
eters were found empirically to provide strong recon-
struction performance. Note that the parameters of the
HNLR algorithm can be tuned based on the PET imaging
system the algorithm is incorporated into to obtain opti-
mal performance for clinical data obtained from the PET
system.

Results and discussion

In order to perform a comprehensive and systematic
assessment of the reconstruction performance of the dif-
ferent methods, the peak signal-to-noise ratio (PSNR) was

&

07
06
0.5
‘ 0.4
0.3

100% sampled FBP (30%)
TVR (30%) Proposed HNLR (30%)

Figure 3 Reconstructed tomograms from the PET1 data set using three different reconstruction methods based on 30% sampling. The
PET1 data set was taken from a 73 year-old man who sought medical attention due to a grand mal seizure and progressive speech difficulties, with a
brain biopsy revealing grade Il astrocytoma. It can be observed that the reconstructed tomogram using the FBP method exhibits the most
significant artifacts (both in the background area and the imaged brain area), when compared to TVR and the proposed HNLR methods. The
reconstructed tomogram using the TVR method exhibits significantly reduced but still noticeable artifacts in the background area, and no artifacts
in the imaged brain area. However, there is noticeable loss in fine detail in the imaged brain area. Finally, the reconstructed tomogram using the
proposed HNLR method exhibits the least amount of artifacts in the background area when compared to FBP and TVR, no artifacts in the imaged
brain area, and noticeably better preservation of fine detail in the imaged brain area.




Wong et al. BMC Medical Imaging (2015) 15:10 Page 7 of 11

08

' 0.7
0.6

05

04

. 03

. 02

01

100% sampled FBP (30%)
TVR (30%) Pronosed HNLR (30%)

FBP
——TVR
Proposed

26 4‘0 EIEI 86 160 150 1“"0 160 1;30 200 20 40 60 8 100 120 10 160 180 200

Figure 4 Reconstructed tomograms from the PET2 data set using three different reconstruction methods based on 30% sampling. The
PET2 data set was taken from a 53 year-old man who sought medical attention due to a grand mal seizure, with a brain biopsy revealing grade IV
astrocytoma. As with the reconstructed tomograms from the PET1 data set, it can be observed that the FBP method results in the most significant
artifacts in both the background and imaged brain areas when compared to TVR and HNLR, the TVR method results in reduced artifacts but
noticeable loss in fine detail in the imaged brain area, and the HNLR method results in the least amount of artifacts and better preservation of fine
detail in the imaged brain area. It is very clear that streaking artifacts (caused by sampling at a sub-Nyquist sampling fraction) is prominently overlaid
on the entire brain region in the reconstruction produced using the FBP method (see red arrows), while they are significantly reduced in the
reconstructions produced by TVR and HNLR. It is also important to highlight that, within the same brain region in the HNLR reconstruction, there is
an overall improvement in sharpness when compared to the TVR reconstruction (see green arrows). Two line profiles (indicated by orange lines)
from the PET data sets reconstructed using the methods are shown at the bottom, and further illustrates the reduction in artifacts and improved
contrast achieved by TVR and HNLR when compared to FBP.
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computed for a wide range of sampling fractions. The
PSNR metric was computed as follows:

(12)

2
PSNR = 10 - log1o (m”x(x) )

MSE

and (MSE) was defined as mean squared error between
original image and reconstructed image:

MSE = % > (@ —f(x))2 (13)

x€Q

where f(x) is original image, f (x) is reconstructed image,
and N is the number of pixels in each image.

Figure 1 shows PET tomograms for the simulated
phantom reconstructed at 30% sampling using the three
reconstruction methods. We can see very clearly that
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the FBP method leads to considerable artifacts in the
reconstructed tomogram, with significant streaking arti-
facts over both the background and the phantom details.
Both TVR and HNLR methods were able to significantly
suppress these artifacts caused due to sampling at sub-
Nyquist sampling fraction. It can also be observed that the
details (e.g., dark circles) in the tomogram reconstructed
using HNLR appear sharper than that reconstructed using
TVR. Furthermore, it can be observed that while the
reconstructed PET tomograms produced by the recon-
struction methods are able to resolve all 4 spots in the
phantom, the resolution of the smallest spot noticeably
suffers as a result of the reduction in sampling and illus-
trates the fundamental tradeoff between spatial resolution
and sampling fraction. For quantitative evaluation, the
PSNR for the PET tomograms reconstructed using FBP,
TVR, and HNLR are calculated as 8.03 db, 38.48 dB, and
38.84 dB, respectively.

A

100% sampled

&

TVR (30%)

A

FBP (30%)

A

Proposed HNLR. (30%)

Figure 5 Reconstructed tomograms from the PET3 data set using three different reconstruction methods based on 30% sampling. The
PET3 data set was acquired from a 70 year-old man with mild Alzheimer’s disease about 9 months prior to imaging. As with the reconstructed
tomograms from the PET1 and PET2 data sets, it can be observed that the FBP method results in the most significant artifacts in both the

background and imaged brain areas when compared to TVR and HNLR. The TVR method results in reduced artifacts but noticeable loss in functional
variation differences in the imaged brain area, and the HNLR method results in the least amount of artifacts and better preservation of functional
variation differences in the imaged brain area.
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The average PSNR of the reconstructed PET data sets
is shown in Figure 2, as a function of the sampling frac-
tion (i.e., the percentage of projections sampled used
to perform sparse reconstruction). It can be observed
that the proposed HNLR method produces reconstructed
PET data with higher PSNR values for all levels of sam-
pling fraction when compared to the FBP method and
the TVR method. It is important to note that there is
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no fundamental tradeoff in terms of spatial resolution as
the data fidelity in projection space is preserved in the
proposed HNLR method.

Figures 3, 4 and 5 shows PET tomograms from the PET
data sets reconstructed at 30% sampling using the three
reconstruction methods. We can see very clearly that the
FBP method leads to considerable artifacts, particularly
streaking artifacts, in both the background and imaged

results of TVR show noticeable loss in detail.

20% 35% 50%
m
= o
(b) (c)
: e
=
I
(d) (e) @)
E e
=z
m
(s) (h) (i)
original

Figure 6 Another set of reconstructed tomograms from the PET3 data set using three different reconstruction methods (FBP: a-c, TVR:
d-f, HNLR: g-i) at 20%, 35% and 50% sampling fractions. It can be observed that the proposed HNLR method can achieve strong reconstruction
results even at relatively low 20% sparse sampling fraction, while the reconstruction results of FBP has very strong artifacts and the reconstruction
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brain areas, which can affect the visibility of certain func-
tional details in the reconstructed data. TVR provides
improved reconstruction performance than FBP, in terms
of reduced artifacts, but still has noticeable artifacts in the
background area and detail loss in the imaged brain area,
which can obscure important functional characteristics
in the tomograms. Finally, the reconstructed tomogram
produced using the proposed HNLR approach exhibits
significantly fewer artifacts, particularly streaking arti-
facts, in the background area compared to FBP and TVR,
while providing better functional detail preservation in
the imaged brain areas in the reconstructed tomograms
than TVR. The artifact reduction by both the TVR and
HNLR methods within the brain region is particularly
noticeable in Figure 4, where it is very clear that streaking
artifacts (caused by sampling at a sub-Nyquist sampling
fraction) is prominently overlaid on the entire brain region
in the reconstruction produced using the FBP method (see
red arrows), while they are significantly reduced in the
reconstructions produced by TVR and HNLR as well as an
improvement in contrast. It is also important to highlight
that, within the same brain region in the HNLR recon-
struction, there is an overall improvement in sharpness
when compared to the TVR reconstruction (see green
arrows). Figure 4 also shows two line profiles from the PET
data sets reconstructed using the methods, and further
illustrates the reduction in artifacts and improved contrast
achieved by TVR and HNLR when compared to FBP.

Figure 6 shows the reconstruction results of all three
tested methods at different sampling fractions (from 20%
to 50%). Each row shows the reconstruction results of
same method, while each column shows the reconstruc-
tion results acquired at the same sampling fraction, but
with different methods. It can be observed that FBP pro-
duces results that contain a large amount of artifacts when
sampled at low sampling fractions. The amount of arti-
facts decrease dramatically when using TVR compared
to FBP. However, it can be seen that the reconstruction
results using TVR have noticeable loss in detail. The third
row of Figure 6 shows reconstruction results of the pro-
posed method at three different sampling fractions, which
has noticeably fewer artifact residuals compared to FBP
and TVR even at a 20% sampling fraction. It is impor-
tant to note that while the proposed HNLR reconstruction
method can help reduce artifacts caused by sampling at
sub-Nyquist sampling fractions, it is limited in its per-
formance when dealing with very low sampling fractions,
as evident in Figure 6(g) where noticeable artifacts still
persists.

Conclusion

The potential use of homotopic non-local regularization
(HNLR) reconstruction framework to maintaining high
reconstruction quality while reducing sampling fraction
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in sparse PET reconstruction was studied. The proposed
reconstruction framework is designed to address issues
associated with artifacts and detail loss with sparse PET
reconstruction. A comparative analysis using real PET
data sets was performed to compare traditional FBP as
well as TVR reconstruction with the proposed HNLR
reconstruction method. Based on experimental results,
we illustrate that promising reconstruction performance
can be achieved using HNLR even at low sampling frac-
tions. Future work includes a more comprehensive evalu-
ative study using larger PET data sets to further validate
the performance of the proposed HNLR framework, the
investigation of different sparsifying transforms to study
their potential for improving reconstruction quality, and
the investigation of incorporating alternative representa-
tions such as multiscale texture representations and local
phase [32,33] for enforcing regularization. Furthermore,
we wish to investigate more advanced data terms such as
the Kullback-Leibler divergence [28,29], which takes bet-
ter advantage of the Poisson noise statistics of PET, as
well as investigate the application of the HNLR framework
for other medical imaging modalities such as diffusion
weighted magnetic resonance imaging [34,35] and corre-
lated diffusion imaging [36]. We also aim to investigate
methods for automatically optimizing the parameters of
the HNLR framework to obtain optimal reconstruction
accuracy. Finally, we wish to investigate the effects of
employing the HNLR framework for sparse reconstruc-
tion on medical image analysis tasks such as medical
image annotation and contouring [37], as well as medical
image registration [32,33,38-41].
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