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Abstract

Background: To evaluate whether Contrast Enhanced Ultrasund (CEUS) with microbubbles (MBs) targeted to
VEGFR-2 is able to characterize in vivo the VEGFR-2 expression in the tumor vasculature of a mouse model of
thyroid cancer (Tg-TRK-T1).

Methods: Animal protocol was approved by Institutional committee on Laboratory Animal Care. Contrast-enhanced
ultrasound imaging with MBs targeted with an anti-VEGFR-2 monoclonal antibody (UCAvecrr) and isotype control
antibody (UCAqc) was performed in 7 mice with thyroid carcinoma, 5 mice with hyperplasia or benign thyroid
nodules and 4 mice with normal thyroid. After ultrasonography, the tumor samples were harvested for histological
examination and VEGFR-2 expression was tested by immunohistochemistry. Data were reported as median and
range. Paired non parametric Wilcoxon's test and ANOVA of Kruskal-Wallis were used. The correlation between the
contrast signal and the VEGFR-2 expression was assessed by the Spearman coefficient.

Results: The Video intensity difference (VIp) caused by backscatter of the retained UCAegrr> Was significantly

higher in mice harboring thyroid tumors compared to mice with normal thyroids (P < 0.01) and to mice harboring
benign nodules (P < 0.01). No statistically significant differences of Vip were observed in the group of mice carrying
benign nodules compared to mice with normal thyroids. Moreover in thyroid tumors Vi of retained VEGFR-2-targeted
UCA was significantly higher than that of control UCAy¢ (P <0.05). Results of immunohistochemical analysis confirmed

thyroid nodules.

VEGFR-2 overexpression. The magnitude of the molecular ultrasonographic signal from a VEGFR-2-targeted UCA
retained by tissue correlates with VEGFR-2 expression determined by immunohistochemistry (rho 0.793, P=0.0003).

Conclusions: We demonstrated that CEUS with UCAyecrr> might be used for in vivo non invasive detection
and quantification of VEGFR-2 expression in thyroid cancer in mice, and to differentiate benign from malignant
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Background

Angiogenesis is a critical determinant of tumor growth
and invasion [1,2] and successful application of novel ther-
apies that target tumor vasculature will require selection
of susceptible tumors and precise evaluation of early treat-
ment response. Vascular endothelial growth factor and its
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main receptor vascular endothelial growth factor recep-
tor 2 (VEGFR-2), are overexpressed on tumor vascular
endothelial cells and have been identified as targets for
antiangiogenic drugs [3-10].

Papillary thyroid carcinoma (PTC) is the most common
malignancy of the thyroid gland. At the molecular level
PTC is characterized by genetic alterations of components
of the mitogen-activated protein kinase (MAPK) pathway
[11]. These include structural chromosome rearrangements
affecting NTRK1 (TRK-T1) tyrosine kinase receptor
that undergo in-frame recombination with various partner
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genes [12]. Specifically, the TRK-T1 oncogene results
from a paracentric inversion of chromosome 1q25 that
fuses the 5" end of the TPR (Translocated Promoter
Region) to the 3" end of NTRK1 genes generating the
constitutively active and oncogenic kinase NTRK1 [12].
Transgenic mice featuring the thyroid-specific expres-
sion of TRK-T1 under the transcriptional control of the
thyroid-specific bovine thyroglobulin (Tg) promoter were
generated previously [13]. Twenty-three% of TRK-T1 mice
of age < 7 months and 78% of mice > 7 months developed
thyroid nodules characterized by malignant features, such
as the proliferation of follicular epithelial cells containing
scant cytoplasm, mitotic figures and papillae with fibro-
vascular stalks [13,14].

In papillary thyroid carcinoma, increased VEGFR-2
expression correlates with an increased cancer cell pro-
liferation assessed by Ki-67 index, with increased thy-
roid tumor size [15,16] and with poor prognosis [16-19].
The thyroid cancer cells of primary tumors taken from
patients with metastases had an higher VEGFR-2 ex-
pression compared to cells taken from primary tumors
of patients without metastases [15,16]. These observa-
tions have been suggested to be clinically useful in
identifying patients who are more prone to develop
metastases.

Recently, tumor angiogenesis imaging in vivo has been
noninvasively explored using contrast enhanced ultra-
sound (CEUS) with microbubbles (MBs) targeted to a,p3
integrin, endoglin, and VEGFR2 [20-24]. This technique
is rapidly emerging as a noninvasive and quantitative
molecular imaging modality that combines the advan-
tages of high spatial resolution, real-time imaging, and
lack of ionizing radiation and may be particularly advan-
tageous in clinical oncology because VEGFR-2 has been
implicated as marker of metastatic potential and poor
prognosis in certain tumors [25-27].

Microbubbles are gas-filled echogenic US contrast agents
that can be targeted to specific molecular markers by
means of the attachment of appropriate ligands to the
surface of the MBs. A specific characteristic of MBs is
their relatively large size, which prevents them from
leaking into the extravascular space. This property can
be exploited for imaging by targeting the MBs to disease
processes reflected on the vascular endothelial cells
lining the luminal surface of capillaries and vessels, such
as inflammation and angiogenesis. When these func-
tionalized MBs are injected intravenously, they distrib-
ute throughout the whole body and attach at tissue sites
expressing the targeted molecular marker, leading to a
local increase of the US imaging signal. This approach
allows the exclusive visualization of molecular markers
of angiogenesis expressed on tumor vascular endothelial
cells, have a potential clinical translation in future
and should improve the ability to detect, diagnose
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stage, select appropriate treatments, and determine prog-
nosis in patients with thyroid pathologies.

To our knowledge, no study has addressed the poten-
tial of targeted CEUS imaging for assessment of thyroid
tumor angiogenesis in vivo by using MBs targeted to
VEGFR-2.

This study aimed to investigate whether targeted CEUS
allows noninvasive assessment of VEGFR-2 expression
on tumor vascular endothelium in Tg-TRK-T1 mice, a
murine model of thyroid cancer. We also investigated
whether the evaluation of expression levels of VEGFR2
in vivo can differentiate benign from malignant nodules

of the thyroid.

Methods

Animal model

Animal studies were performed in accordance with
National Institutes of Health (NIH) recommendations
and Animal Research Advisory Committee (ARAC) pro-
cedure [27] and the approval of the Italian Institutional
animal research committee (Institutional Animal and Care
Committee of the University of Naples “Federico II” and
the Italian Ministry of Health). All animal procedures
in this study were conducted by a veterinarian and
conformed to all regulations protecting animals used
for research purposes, including national guidelines
[D.L. 27 Gennaio 1992, 116 Suppl. G.U 40 18 Febbraio
1992. Direttiva CEE n.609/86] as well as the protocols
recommended by Workamn et al. [28].

Tg-TRK-T1 transgenic mice have been previously
described [13]. From 2010 to 2011, thyroid Ultrasound
was performed in 16 Tg-TRK-T1 transgenic mice model
of thyroid carcinogenesis [26]. Body weight range of
animals was 29-32 gr, equally distributed among male
(n=9) and female (n=7). Mice were examined every six
months and were sacrificed immediately after the last
ultrasound scanning. At the time of the necroscopy, the
age range of mice was 12—15 months.

High frequency ultrasound with targeted contrast
enhanced imaging

A Vevo 770 microimaging system (Visualsonics, Toronto,
Ontario, Canada) with a single element probe, center fre-
quency of 40-MHz was used for all the examinations. The
transducer has an active face of 3 mm, a lateral resolution
of 68.2 um, axial resolution of 38.5 um, focal length of
6 mm, mechanical index 0.14, transmit power 50%, and a
dynamic range 52 dB [29,30]. Precise and repeatable con-
trol over the position of the two-dimensional image plane
was obtained with a rail system (Vevo Integrated Rail
System II; Visualsonics). Mice were anesthetized using
1.5-2% isoflurane vaporized in oxygen (2Lt/min) on a
heated stage, with constant monitoring of their body
temperature, using physiological monitoring platform [31].
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Hairs were removed from the area of interest (neck and
the high thorax) with a depilatory cream to obtain a
direct contact of the ultrasound gel to the skin of the
animal minimizing ultrasound attenuation. A prewarmed
gel was used to provide a coupling medium for the trans-
ducer. Real-time imaging was performed as previously
described [32]. The transducer focal zone was placed at
the center of the thyroid gland and nodules, when they
were present. All nodules were measured in three planes,
and images were recorded to document nodule location
and orientation. Each examination lasted for about
30 min. All ultrasonographic assessments were performed
by the same trained sonographer (A.G.) that was not
aware of the tumor type and of type of MBs adminis-
tered to mice.

Contrast-enhanced agent preparation and injection

The Ultrasound Contrast Agent (UCA) MicroMarker
(VisualSonics, Inc, Toronto, Ontario, Canada), specifically
designed for high frequency ultrasonography, was pre-
pared and targeted according to manufacturer guide-
lines. These MBs have a mean diameter of 1.5 pm
(range, 1-2 um) and contain approximately 7600 mole-
cules of streptavidin per square micrometer chemically
attached to the phospholipid shell of the MBs via a poly-
ethylene glycol spacer [22]. The contrast agent prepar-
ation protocol was designed to achieve optimal saturation
of the microbubble surface with a maximal amount of
antibodies while minimizing the amount of free non
conjugated antibodies in the solution. A vial of the dry
UCA containing 9.2 x 10® dry streptavidin-coated MBs
was re-suspended in 1.2 mL of sterile saline. Then, either
30 pg of biotinylated anti-mouse VEGFR-2 antibodies
(clone Avas12al; eBioscience, San Diego,) or a biotinylated
immunoglobulin G (IgG) isotype control (eBioscience,
Inc, San Diego, CA) were added per vial of contrast
agent to produce either a VEGFR-2-targeted (UCAvggrr.2)
and a control UCA (UCAg) by using biotin-streptavidin
interactions, resulting in approximately 6000 ligands
per square micrometer of surface area [22]. All mice
were injected with two boluses of both the UCAvegrr. 2
and UCA 4 via a tail vein (injection time, 2 seconds).
Each bolus containing 3.8 x 10’ MBs in 0.02 mL of saline
and was followed by a 0.02 mL saline flush.

To allow MBs to clear from previous injections, we
waited at least 30 minutes between different bolus injec-
tions. The sequence of injections was always the same
in all animals examined. The total amount injected was
80 pl.

Image acquisition and quantification

The system was set at 50% transmit power, resulting in a
mechanical index of 0.14 (manufacturer specification).
Images were acquired at a 20-Hz frame rate. The data
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were log compressed and digitized to 12 bits. Data were
further compressed to 8 bits for screen display. The
ultrasound probe was positioned so that the central por-
tion of the thyroid nodule was contained within the focal
zone of the ultrasound transducer. The probe position,
gain settings, and midfield focus were initially optimized
and maintained throughout each experiment. The goal
of the ultrasonographic image acquisition and analysis
protocol (Figure 1) was to differentiate the backscattered
acoustic signal due to MBs retained by the tumor from
the background signal of the tumor itself and MBs still
freely circulating in the bloodstream. CEUS imaging was
paused for 4 minutes after injection. This time allowed
binding and retention of targeted MBs while awaiting
wash-out of the unbound contrast agent.

After the 4-minute waiting period, approximately 300
ultrasonographic frames of the tumor were acquired at a
temporal resolution of 10 seconds. A high-power ultra-
sound destruction sequence was then applied (20 cycles
with a frequency of 10 MHz and a mechanical index of
0.59). After the destruction pulse, the system was reset
with identical imaging parameters as before the de-
struction event, and another set of images (=300 frames)
was acquired. Image processing and quantification were
performed with the software implemented in the ultra-
sound scanner. Image processing used in the Vevo770
system relies on 2 sets of images: a predestruction set
and a postdestruction data set. The received log com-
pressed signals were expressed in an arbitrary scale unit
called Video Intensity (VI). The average VI of predestruction
and postdestruction (background) sonograms was mea-
sured in a region of interest encompassing the centre of
examined tumor. The difference in VI between pre-
destruction and postdestruction ultrasonographic frames
was calculated and expressed as VI difference (VIp) that
provided a relative measure of the amount of the UCA
retained by the tumor and was considered to represent
MBs adherent to molecular endothelial markers.

Histology and immunohistochemistry

After CEUS imaging, mice were euthanized, the thyroids
were excised and immediately fixed in buffered formalin
for 4 h. Tissues underwent automated processing and par-
affin embedding; 5 pm sections were cut and hematoxylin
and eosin stained for microscopic analysis. Thyroid tissues
were classified according to the World Health Organization
criteria for the evaluation of mouse thyroid tumors [33].
Briefly, thyroid was considered as normal when composed
by variable-sized follicles covered by flattened monolayered
epithelial cells. Hyperplastic thyroid was defined by the
occurrence of small follicles with scant colloid and tall
epithelial cells merging with normal areas. Follicular
adenoma was defined as a well demarcated nodule with
a distinct papillary and/or follicular architecture. Malignant
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lesions were defined based on the invasion of the surround-
ing glandular parenchyma and stroma.

To confirm expression of VEGFR-2, immunohisto-
chemistry analysis of tumor sections was performed.
Formalin-fixed and paraffin-embedded 3-5 pum sections
were deparaffinized, placed in a solution of absolute
methanol and 0.3% hydrogen peroxide for 30 min, and
treated with blocking serum for 20 min. After blocking,
slides were incubated with a mouse monoclonal anti-
VEGER-2 antibody (dilution 1:200) in a moist chamber
at 4°C and processed according to standard procedures.
Negative controls by omitting the primary antibody were
included. Cases were scored as positive when unequivo-
cal brown staining was observed. Immunoreactivity was
expressed as the average percentage of positively stained
target cells [(-): no staining (< 5% positive cells); (+):
low/weak (> 5% - < 25% positive cells); (++): medium/
moderate (> 25% - < 50% positive cells); (+++): high/
strong (> 50% positive cells)]. Score values were independ-
ently assigned by two blinded investigators (G.C. and R.P.)
and a consensus was reached on all scores used for

computation. All histological and immunohistoche-
mistry studies were performed and interpreted by patho-
logists, who did not know the diagnosis determined by
ultrasonography.

Statistical analysis
Data were reported as median and range. Paired non
parametric Wilcoxon’s test was used to compare data from
different VI (UCA;, UCAyeger2). ANOVA of Kruskal-
Wallis was used to compare the contrast measurements
of the three groups. Post hoc analysis was performed
using the Dunn test. The correlation between the con-
trast signal and the VEGFR-2 expression was assessed
by the Spearman coefficient.

A P < 0.05 was considered statistically significant. All
statistical analysis were performed with MedCalc 12.0 stat-
istical software.

Results and discussion
Examination of the thyroid gland was performed by CEUS
with UCAyegrr2 and UCA . The UCA administration
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Table 1 Quantitative video intensity for ultrasound contrast agent targeted with isotype control antibody (UCA,g,) and
anti-VEGFR2 monoclonal antibody (UCAyggrgra2)

Normal thyroid (n.4) Hyperplasia/Benign nodules (n.5) Thyroid carcinoma (n.7)
Video intensity UCA g4
Video intensity difference 11.3 (94-14.7) 12.2 (8.5-19.6) 194 (114-226)
Video intensity UCAvecrra
Video intensity difference 10.9 (10.3-14.9) 13.3 (10.8-15.8) 30.1 (25.1-356)* §

* Statistical significant difference between Thyroid carcinoma and normal thyroid or Hyperplasia/benign nodules p<0.05.
§ Statistical significant difference between UCA targeted with anti-VEGFR2 monoclonal antibody and isotype control antibody p=0.0156.
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Figure 2 Video intensities curves. Predestruction and postdestruction video intensities curves for the control UCA (A-C) and the VEGFR2-targeted
UCA (D-F). The average video intensity of predestruction and postdestruction sonograms was measured and the difference in video intensity
between the predestruction and postdestruction ultrasonographic frames was calculated and expressed as video intensity difference (Vip). This value
provided a relative measure of the amount of targeted microbubbles retained by the tumor. Video Intensities curves of a normal thyroid parenchyma
(A,D), adenoma (B,E) and a thyroid tumor (CFF). These images show a significant difference between retention of the control and VEGFR2-targeted
UCAs in a thyroid tumor.
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showed no notable toxicity, and all animals recovered after
US imaging without any detectable signs of distress.

At the ultrasound evaluation in 16 mice examined: in
4 the thyroid showed normal size and homogeneous
echotexture of parenchyma, without nodules, and there-
fore classified as normal, 2 mice showed features of benign
diffuse hyperplasia and 10 mice had a nodular process.

At the histological examination 4 normal thyroids, 2
hyperplasias, 3 adenomas, 7 papillary thyroid carcinoma
were found, confirming Ultrasound diagnosis. The be-
nign thyroid nodules measured 0.11-0.27 mm (median
0.17 mm) while the tumors measured 0.16-5.51 mm
(median 0.54 mm).

For thyroid tumors the VI was significantly higher
when using UCAyggrr-2 compared with L/CA , whereas
for normal thyroids or in mice harboring benign thyroid
nodules the VI for UCAyggrr.o was equal to the VIp
for UCAj (Table 1 and Figure 2). Median range VIp
UCAvEeGer» thyroid tumors, 30.1 (range 25.1-35.6) versus
VIp UCA4s 19.4 (range 11.4-22.6) (P< 0.01).

Benign nodules VIp UCAyzgzr 2 13.3 (range 10.8-15.8)
versus VIpUCA j, 11.82 (range 8.5-19.6) (P= n.s). Normal
thyroids VIp UCAygger2 10.9 (range 10.3-14.9) versus
VIp in UCAjg 11.3 (9.4-14.7); (P= n.s) (Table 1). These
values were used as relative measures of the VEGFR-2
over-expression within tumor vasculature and the L/CA y¢
served as a control for demonstration of the specificity
of UCAvegrr.o retention.

The median difference between VI, UCAg, and VIp
of UCAvecrr.2 Was considered as a measure of VEGFR-2
specific binding, was 11.6 (range 9.6-19.2) VI units for
thyroid carcinoma significantly higher (p=0.0037) than
for normal thyroid (median 0.3, range -1.57-1.32) and
hyperplasia/benign nodules (median 2.3 range -3.8-3.0).

Figure 2 shows representative VI curves of a thyroid
malignant nodule, normal thyroid and benign nodule
imaged with the UCAyggrr2 and UCA . There was a
moderately intense signal from the UCAygger.» retained
by the tumor (Figure 2F). The corresponding images for
the LUCAj showed no retention of MBs in the tumor
(Figure 2C). The UCAyggrr.» in the vascular bed of be-
nign nodules and normal thyroids showed very low re-
tention in UCAyggrr.» (Figure 2D-E).

After CEUS imaging, mice were subjected to general
anesthesia and than euthanized.

In the group of examined animals the greatest UCAyzgrr 2
Video Intensity for normal or benign thyroid nodules was
15.8 units while the lowest UCAyggrr» Video Intensity
for carcinomas was 25.1 units. Therefore, we propose a
cut-off value of 20 VI units to discriminate normal or
benign nodules from malignant thyroid, that may be
verified using a larger number of subjects.

To confirm expression of VEGFR-2, immunohistochem-
istry analysis of tumor sections was performed (Figure 3).
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Figure 3 Representative microphotographs of
immunohistochemistry analysis of murine thyroid stained
with antibodies against VEGFR type 2 receptor. Brown color
indicate presence of VEGFR2. Low grade expression of VEGFR-2
in normal thyroid (A), in thyroid adenoma (B) and high grade

expression in thyroid carcinoma (C).

The strength of the ultrasound signal from the UCAyzgrr 2
was significantly correlated with the level of actual
VEGEFR-2 expression (rho 0.793, P=0.0003) (Figure 4).
In this study we have evaluated the expression levels
of a well-described tumor angiogenic marker i.e. VEGFR-2
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Figure 4 Video Intensity Difference of VEGFR-2 targeted microbubbles and expression of VEGFR-2 determined by Immunohistochemistry
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carcinoma

in a mouse model of thyroid tumor (Tg-TRK-T1) com-
pared with normal or benign tumors and whether targeted
CEUS allows assessment of this marker noninvasively.
The in vivo binding of the VEGFR-2 targeted UCA in thy-
roid tumors was substantially higher compared with
control UCA. This difference in retention affirmed the
specificity of a VEGFR-2- conjugated UCA for endothe-
lial targeting. The UCA-IgG was higher in the tumors
than in the benign thyroid nodules and normal thyroids,
however the difference was not significant. Therefore
targeting with VEGFR2 was necessary for differentiat-
ing a malignant tumor from a benign nodule. Vascular
endothelial growth factor receptor 2 (VEGFR-2) is one
of the best-characterized molecular marker of tumor
angiogenesis [34-37]. It is overexpressed on tumor vas-
cular endothelial cells in several solid tumors, including
breast [38,39], ovarian [40,41], pancreatic [42] and thyroid
cancer [19] and it is considered an important factor in
tumor angiogenesis. VEGFR-2 is an endothelium-specific
receptor tyrosine kinase that is activated by VEGF A. Acti-
vation of the VEGF/VEGER-2 pathway triggers multiple
signaling networks that result in endothelial cell survival,
mitogenesis, migration, differentiation, and vascular per-
meability [43]. Insights into the expression levels of tumor
angiogenic markers during the progression of cancer,
could be of great importance in developing novel molecu-
lar imaging strategies aimed at visualization of tumor
angiogenesis markers that are overexpressed in particular
in early stage cancer for screening purposes.

The in vivo US imaging signals of the injected targeted
UCA was correlated with results from immunochemistry
analysis of VEGFR-2 expression and this positive cor-
relation suggested that targeted contrast-enhanced US
imaging could be used to monitor expression levels of
angiogenic markers noninvasively (Figure 4). Thus re-
tention of a VEGFR-2-targeted UCA is a more specific
as in vivo marker for the level of VEGFR-2 expression
than for the quantification of tumor vascularity.

The ability to visualize and quantify tumor angiogenesis
may allow screening and detecting cancer at an early stage
and antiangiogenic treatment monitoring in patients [34].

Targeted-CEUS is a promising non invasive molecu-
lar imaging approach that allows in vivo assessment
of molecular markers of tumor angiogenesis [44-48].
The number of attached MBs depends on various fac-
tors, including the extent of tumor vascularization,
physical forces that translate the freely circulating con-
trast MBs to the vessel wall, and the affinity of the
binding ligand to the molecular targets, as well as the
expression level of the molecular targets on tumor
vessels [47-52].

Our study has several limitations. Molecular imaging
of VEGFR-2 expression was performed in developed tu-
mors (0.16-5.51 mm in diameter) in which it is very
likely that the receptor is expressed at more. Thus, the
usefulness and accuracy of VEGFR-2-targeted UCA im-
aging at earlier stages of tumor development needs to
be evaluated.
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A 2-dimensional image acquisition method was used,
and it is very difficult to know whether ultrasound scans
perfectly correspond with the region subjected to histo-
logical examination. Studies carried out in 3D mode
could ensure greater correspondence between quantita-
tive ultrasonographic assessment of VEGFR-2 expres-
sion and results of immunochemical analysis.

The small animal Vevo770 US system for dedicated
small-animal imaging used in our study for MBs detection
operates on received signals that undergo log-compression
prior to image display. Log-compressed gray scale image
values referred as “Video Intensity” can produce inaccurate
estimation of perfusion user and instrument-dependent.

Conclusions

The results of our study suggests that targeted CEUS
imaging allows a non-invasive assessment of VEGFR-2
expression levels in thyroid in vivo. The results provide
further insights into the biology of angiogenesis in thyroid
tumors and may help in defining promising imaging targets
for both early cancer detection and antitumor therapies.
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