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Abstract

Background: From the viewpoint of the patients’ health, reducing the radiation dose in computed tomography (CT)
is highly desirable. However, projection measurements acquired under low-dose conditions will contain much noise.
Therefore, reconstruction of high-quality images from low-dose scans requires effective denoising of the projection
measurements.

Methods: We propose a denoising algorithm that is based on maximizing the data likelihood and sparsity in the
gradient domain. For Poisson noise, this formulation automatically leads to a locally adaptive denoising scheme.
Because the resulting optimization problem is hard to solve and may also lead to artifacts, we suggest an explicitly
local denoising method by adapting an existing algorithm for normally-distributed noise. We apply the proposed
method on sets of simulated and real cone-beam projections and compare its performance with two other algorithms.

Results: The proposed algorithm effectively suppresses the noise in simulated and real CT projections. Denoising of
the projections with the proposed algorithm leads to a substantial improvement of the reconstructed image in terms
of noise level, spatial resolution, and visual quality.

Conclusion: The proposed algorithm can suppress very strong quantum noise in CT projections. Therefore, it can be

used as an effective tool in low-dose CT.
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Background

Computed tomography (CT) is one of the most widely
used imaging modalities in medicine and its usage
has been consistently growing over the past decades
[1]. Although CT is an indispensable tool in modern
medicine, one of its drawbacks is that the radiation used
in this type of imaging can be harmful to the patient
health. Reducing the radiation dose requires reducing the
number of projection measurements or reducing the radi-
ation intensity, which in turn results in noisier measure-
ments. Reconstructing a high-quality CT image from such
measurement is a great challenge. The traditional image
reconstruction methods in CT are based on filtered back-
projection (FBP). Although FBP-based methods are fast
and relatively easy to implement, they perform very poorly
when the number of projections is reduced or when the
measurements are very noisy. With increased awareness
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of the harmful effects of excessive radiation, recent years
have witnessed a new interest in statistical reconstruction
methods in CT. These methods promise reconstructing
a high-quality image from undersampled or noisy projec-
tions. Statistical image reconstruction methods in CT are
based, as their name implies, on including the statistics of
the detected photon counts in the reconstruction process.
They can be classified into three categories [2, 3]:

(A) Methods that work on the raw data (sinogram)-
these are mostly smoothing techniques that aim at
reducing the Poisson noise in the projection data.
The processed sinogram data are then used to
reconstruct the image using an iterative or filtered
backprojection (FBP) method.

(B) Methods that work on the reconstructed image-
these are also denoising techniques, but operate in
the image domain.

(C) Methods that use statistical modeling of the imaging
process to devise iterative algorithms for image
reconstruction.
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Whereas the methods in category (C) usually lead to
better image quality, the first two types of methods are
usually easier to implement, faster, and independent of the
image reconstruction method. Among the first two cat-
egories of methods, category (A) is usually much more
effective. This is because while we have a good under-
standing of the properties of the noise in the raw (i.e.
projection) data, the statistics of the noise in the recon-
structed image are not as well understood. Hence, meth-
ods that filter the reconstructed image are post-processing
algorithms that cannot use the photon statistics and their
performance is in general inferior to filtering in the raw
data domain.

Previous studies in sinogram denoising are numerous
and they present a diverse set of possible approaches to
the problem. Because the variance of the Poisson noise
changes with the signal amplitude, adaptive filters are
a natural choice and they have been researched exten-
sively [4, 5]. Bayesian approaches, usually maximizing a
weighted sum of the data likelihood and a regularity term,
have also been proposed in several studies [6, 7]. These
algorithms can be very elaborate because the resulting
optimization problem is usually hard to solve. At the
other end of the spectrum of algorithmic complexity, there
exist very simple methods involving shift-invariant low-
pass filters that reduce the high-frequency variations in
the sinogram [8, 9]. As one might expect, these meth-
ods are much less effective because they do not consider
the signal-dependent nature of the noise. Another class
of algorithms that have been used for sinogram denoising
include multi-resolution methods involving short-time
Fourier and wavelet transforms [10, 11]. These methods
are based on a standard signal processing approach of sep-
arating the noise from the signal in the transform domain.
A number of studies have focused on denoising the pro-
jection data in the Radon space (i.e. after the logarithm
transformation). Even though the photon counts follow a
Poisson distribution, the noise in the Radon space follows
an approximately Gaussian distribution [12, 13]. There-
fore, some studies have proposed algorithms for noise
suppression in the Radon space based on the assump-
tion that the noise is normally distributed [14, 15]. The
Gaussianity assumption significantly simplifies the prob-
lem and widens the range of tools that can be employed
in algorithm development. However, as the photon counts
decrease, the distribution of the noise in the Radon space
can significantly depart from a Gaussian distribution [13].
Therefore, these methods become less efficient in low-
dose setting, which is exactly where noise suppression is
mostly needed.

In the past decade, image denoising has witnessed
a growing interest in patch-based methods. The two
main classes of patch-based denoising methods include
dictionary-based denoising methods and nonlocal-means
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methods. Dictionary-based denoising methods are based
on the assumption that small patches of natural images
have a sparse representation in a (usually overcom-
plete) dictionary that can be learned from training data
[16, 17]. As opposed to more traditional denoising meth-
ods that use an off-the-shelf basis (e.g., a wavelet basis),
these dictionary-based methods adapt the dictionary to
the specific class of images at hand. If the dictionary is
well-trained, genuine image features will have a sparse
representation in the dictionary, whereas noise will not
have such a sparse representation. Therefore, sparse
representation of image patches will lead to denoising.
Dictionary-based denoising methods have shown to be
highly successful in denoising of general natural images
[16, 17] as well as medical images [18, 19]. The nonlocal-
means methods, on the other hand, exploit the self-
similarities in natural images. To estimate the denoised
value of each pixel, they consider a small patch centered
on that pixel and search the image for patches that are
similar to this patch. The true (i.e., denoised) value of the
pixel is estimated by some collaborative filtering of the
found similar patches. This collaborative filtering was in
the form of a weighted averaging in the original nonlocal-
means algorithm [20, 21], but has much more elaborate
forms in more recent algorithms [22]. Although the ori-
gins of these denoising methods go back approximately
10 years, they have been extended and improved in many
ways and they present some of the best available image
denoising methods. One of the limitations of patch-based
methods, especially for large 3D images that are com-
mon in medical applications, is their high computational
demands.

In this study, we suggest smoothing the noisy sinograms
by minimizing a cost function that consists of a data like-
lihood term and a regularization term that promotes gra-
dient sparsity. The resulting optimality condition suggests
an adaptive filter that carries out a stronger denoising
where the signal intensity is higher, which is the expected
outcome under Poisson distribution. Instead of solving
the resulting optimization problem directly, we suggest
modifying an existing algorithm such that it approxi-
mates the exact solution locally. Therefore, our approach
computes the denoised value of each sinogram pixel by
solving a local optimization problem in a small neighbor-
hood around that pixel. We will evaluate the performance
of the suggested approach by applying it to noisy simu-
lated projections and low-dose projections acquired from
a micro-CT scanner.

Methods

Given a noisy image, v, the goal is to find an image u
that ideally preserves all important features in the image
while reducing the unwanted noise. Since this is an ill-
posed inverse problem, additional information needs to be
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introduced to regularize the problem. The denoised image
can then be found by minimizing a cost function of the
form:

1
E(u) = 5||u—v||§+ue<u) 1)

The first term in E, («) reflects the requirement that the
denoised image should be close to the noisy image and
the second term is the regularization. In the context of
denoising problem formulated as (1), a proper regulariza-
tion is necessary because without a regularizing term the
noisy image itself is the only solution of the problem; i.e.,
if v = 0 then u = v is the only minimizer of Ej (x). A
famous example of variational denoising methods is the
Rudin-Osher-Fatemi (ROF) model that has the following
form [23]:

1
B = 5llu=viiF+2 [ vl @

where © denotes the image domain and A is the regu-
larization parameter. The second term, where Vu is the
gradient of u, is the regularization term. The choice of
£y-norm in the first term stems from the assumption
of additive Gaussian noise. For the case of Poisson dis-
tribution considered in this study, this term has to be
modified.

Let u(i,j) and v(i,j) denote pixels of discretized ver-
sions of # and v. For an arbitrary pixel location (from
the probability mass function of a variable with Poisson
distribution):

e 4D y (4, )V

P, j); u(i,)) = 3)

v(i, j)!
assuming the pixel values are independent, for the entire
image we will have:

Pevwy =]

ij

e_”(i’j)u(i,j)v(i’/)
_ 4
v(i, j)! @

We ignore the denominator, which is independent of
u. Since we want to find a functional to minimize, we
consider the negative logarithm of the numerator:

—log(P(v|u) o Z u(i,j) — v(i, j)log (u(i, j)) (5)

ij
With this modified fidelity term, the new energy func-
tional to be minimized will have the following form [24]:

1
Ey(u) = f‘/(u—vlogu)—f—k‘/ |Vu| (6)
2 Ja Q

Now, compare the optimality conditions for the two
models (obtained from the Euler-Lagrange equation):

{ uu—v)+ip=0 For the ROF model in (2)

For the new model in (6)

(7)

(U—v)+(Guw)p=0
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where p is a sub-gradient of [, |[Vu/|. The only difference
between the two equations is the dependence of the reg-
ularization parameter on u in the new model. The new
model suggests that a stronger smoothing must be applied
where signal has larger values. This outcome agrees with
what we expect since under Poisson distribution noise
level is proportional to signal intensity.

Minimization of the new functional in (6) is not a
straightforward problem. One approach is to first replace
|[Vu| with /|Vu|? + € for a small ¢ > 0 and then to
apply a gradient descent iteration [24]. Another approach,
suggested in [25], is to use a Taylor¥ expansion of the
data fidelity term and to minimize this approximate
model. In this paper, we follow an algorithm that was
developed for the original ROF model [26]. However,
we denoise each sinogram pixel separately by minimiz-
ing E;(u) in a small neighborhood around that pixel,
and with a regularization parameter inspired by the new
model.

Total variation denoising has proved to be very effec-
tive when applied to piecewise-constant images. On more
complex images, however, it can lead to undesired effects.
Most importantly, on images with piecewise-linear fea-
tures, i.e. regions with smooth change in intensity, ROF¥
original model leads to staircase artifacts. This is because,
by design, ROFN model favors piecewise-constant solu-
tions. We believe that this can be a major problem when
applying TV denoising to sinogram images because even
if the imaged object is piecewise-constant, its projections
can be very far from piecewise-constant. This is easy to
visualize because a feature with uniform intensity in the
imaged object will have a piecewise-constant projection in
the sinogram only if different rays from the x-ray source
to the detector plane cut the same length through that
feature, which is a very unlikely scenario. Hence, the pro-
jections are very likely to contain features of higher orders
of regularity (i.e., piecewise-linear, piecewise-quadratic,
etc.) that would suffer from a staircase effect when treated
with the ROF model. A heavily researched approach to
reducing the staircase effect is to replace the ¢; norm
of the gradient with the ¢; norm of higher-order differ-
ential operators [27, 28]. A less sophisticated approach,
but one that has a trivial implementation, is to perform
the total variation minimization locally. This approach
has also been shown to alleviate the staircase effect [29].
Moreover, with a local minimization strategy, if the size
of the neighborhood considered in minimization is small
enough, one can safely assume that the signal intensity
and noise level are approximately constant. Therefore, a
solution based on the ROFX original model will be a good
approximation to the solution of the new model based on
Poisson noise. This way, we can utilize efficient existing
algorithms for the ROF model while avoiding the staircase
artifacts.
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Since our approach is based on Chambollel famous
algorithm [26], we briefly describe this algorithm here. If
we denote by X and Y the space of the image u and its
gradient, Vu, respectively, then an alternative definition of
total variation of u is:

Y IVulij=sup {(p, Vu)y :p € Volpijl <1} (8)
if
Chambolle introduced the discrete divergence opera-

tor as the dual of the gradient operator, i.e. (p, Vu)y =
(—div p, u)x. In the discrete image domain:

(divp);; = (pil,j _pil—l,j) + (Pzz,j _piz,j—1) ©)

Because of the duality of the gradient and divergence
operators, total variation can also be written as:

D IVulij=sup(zu)x K={divp:peY,|p,l <1
i zeK
(10)

The minimizer of the energy functional in (2) is then
obtained by projecting v onto the set AK:

u=v—mrg®) (11)

which is equivalent to minimizing the Euclidian distance
between v and A divp, and this can be achieved via the
following iteration for computing p:
" R
P =0, p?’.“ _ pijtrT (V(divp" —v/A);;
o L+ o[ (V(divp" — v/0)), |

(12)

where t > 0 is the step size. For a small enough step size,
T < 1/8, the algorithm is guaranteed to converge [26].
Instead of a global solution, we minimize the energy
functional (6) in a small neighborhood of each pixel.
To this end, let us denote by @ the set of indices that
define the desired neighborhood around the current pixel.
For example, for a square neighborhood of size (2m +
1) x (2m + 1) pixels that we used in this study, o =

{(i,j): Lj=-m: m} We also consider a normalized
Gaussian weighting function on this neighborhood:
.y @+
W (i,j) = exp <_h2] (13)

The local problem will then become that of minimizing
the following functional:

1
Ew) = 5||u’ —volldy + A’/ V| (14)

w
where ||.| |%V denotes the weighted norm with weights W
and v,, denotes the noisy image restricted to the window
o around the current pixel. It must be clear that here /'
is a function defined only on the neighborhood w. The
solution of this local optimization problem will be similar
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to Chambollel algorithm described above [29]. The only
difference is in the update formula for p:

. R ,
P =0 gt = P+ (V (D Hdivp" —v/X)),;

YT 14| (V (D vy —v/Y)), |

(15)

where D is a diagonal matrix whose diagonal elements are
the values of W.

The regularization parameter, A/, must be chosen
according to (7). The simplest approach is to set
A = iv(i,j), where A is a global regularization parameter
and v(i,j) is the value of the current pixel in the noisy
image. Since v(i,j) is noisy, a better choice is to use a
weighted local average as the estimate of the intensity
of the true image at the current pixel (note that the
maximum-likelihood estimate of the mean of a Poisson
process from a set of observations is the arithmetic mean
of the observations). Therefore, we suggest the following
choice for the local regularization parameter.

. u<ij<a W (@ v(i—1.j—])

A h
Zfafi’,j’fa w’ (i/,j/) where
) 2+
W/(l,]) = exp <_(h/2)
(16)

There are several parameters in the proposed algo-
rithm. The global regularization parameter A controls the
strength of the denoising. It should be set based on the
desired level of smoothing. Parameter m sets the size of
the neighborhood considered around each pixel, which
in this study was chosen to be a square window of size
(2m+ 1) x (2m + 1). Numerical experiments in [29] have
shown that in total variation denoising, the influence map
of a pixel is usually limited to a radius of approximately
10 pixels for typical values of the regularization param-
eter. Therefore, a good value for m would be around 10,
which is the value we used for all experiments reported
in this paper. The width of the Gaussian weighting func-
tion W is adjusted through 4. We used # = 2m which we
found empirically to work well. Similarly, @ and /' in (16)
determine the size of the window and the weights used
for determining the local regularization parameter. These
have to be set based on the noise level in the image; larger
values should be chosen when noise is stronger. In this
study, we used @ = 4 and /' = 2a.

A simple implementation of the proposed algorithm can
be computationally intensive because it will involve solv-
ing a minimization problem, though very small, for every
individual pixel in the sinogram. This will be a major
drawback because a big advantage of sinogram denois-
ing methods, compared to iterative image reconstruction
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methods, is the shorter computational time. To reduce
the computational time, after minimizing the local cost
function (14) around the current pixel, we will replace
the value of all pixels in the window of size (2a + 1) x
(24 + 1) around the current pixel, instead of just the cen-
ter pixel, and then shift the window by (2a + 1). Our
extensive numerical experiments with simulated and real
projections showed that with this approach the results will
be almost identical to the case where only one pixel is
denoised at a time. This is the approach that we followed
in all experiments reported in this paper.

Results and discussion

We evaluated the proposed denoising algorithm on sim-
ulated projections and two sets of real low-dose projec-
tions of a physical phantom and a rat obtained using a
micro-CT scanner. We compared the performance of our
proposed algorithm with two other methods:

1. A bilateral filtering algorithm proposed in [14]. This
bilateral filtering algorithm works by minimizing a
cost function of the following form:

Ew) =YY Pi(kK)Py(k,K)

k keQy

where k denotes the index of a pixel, Q is a
neighborhood around this pixel, and P; and P, are
two cost functions in terms of the spatial distance
and difference in pixel values, respectively, both
having Gaussian forms:

, (k — k)
Pi(k, k') = exp BTy

202

The algorithm parameters include d and o that
control the range of weighting for P; and P;. The
authors in [14] suggest a fixed filter length of w = 5
and fixed d = w/6 = 5/6 (that they found
empirically to be a good choice) and try a range of
values for o between 0.7 and 2.8. In this study, we
applied the bilateral filtering for several values of o in
this range and apply the proposed algorithm for
several values of the regularization parameter, A.

2. A nonlocal principal component analysis (NL-PCA)
algorithm proposed in [30]. In this method, patches
of the image are first clustered using the K-Means
algorithm. For all patches in a cluster a Poisson PCA
(also known as exponential PCA) is performed to
denoise them. The PCA problem is solved via
alternating NewtonM iterations. The denoised
patches are returned to their original locations and
averaged (to account for the patch overlaps) in order

— )2
Py(k, k') =1 — exp (—(ukuk))
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to form the denoised image. Patch-based methods
are computationally very intensive. Therefore, with
this algorithm we used parameter settings that
resulted in a reasonable computational time.

Simulated data

We simulated 360 noisy cone-beam projections, from
0° to 359° with 1° increments from a 3D Shepp-Logan
phantom according to the following model [12, 31]:

Ny = N e(= Jinds) (17)

where N; and N} denote, respectively, the number of
detected and incident photons for the ray that extends
from the source to the detector i and fl uds is the line
integral of the attenuation coefficient along that ray. We
assumed Né to be constant for all j, i.e., no bowtie filtra-
tion, and N, to be a Poisson-distributed random variable
with the expected value given by (17). We used two values
of Né = 500 and 2000 to simulate two sets of projections,
which we will call high-noise and low-noise, respectively.
The phantom size was 512 x 512 x 512 voxels and the
projections were each 700 x 700 pixels in size.

Figure 1 shows one-dimensional profiles of the noisy
and denoised projections. The plots in this figure
show that the proposed TV-based denoising significantly
removes the noise and seems to be superior to bilateral fil-
tering and NL-PCA. For quantitative comparison, because
we have access to the true noise-free projections, we use
the following criteria:

(a) Root Mean Square of the Error (RMSE), where error
is defined as the difference between the denoised and
the true (i.e., noise-free) projections.

(b) Mutual information (MI), which treats the
projections as stochastic processes [32, 33]:

h h

* 7 * A p(u;kr l:t/) )
MI » = o Uj 1 =
) ; j:le(u i1)log ( pd)pliy)

Here, u* and # represent the true and denoised
projections, respectively. We used histograms of u*
and i for estimating p(u]) and p(it;) and their joint
histogram for estimating p(u}, it;), and h is the
number of bins in the histograms. We normalized
the computed MI(u*, &) by dividing it by MI(z*, u*).

Figure 2 shows the plots of RMSE and MI for the
proposed algorithm, bilateral filtering, and NL-PCA. For
the proposed algorithm, we have plotted these values
for 10 logarithmically-spaced values of A in the range
[0.01,1], which we found to give the best denoising
results. For bilateral filtering, following [14], we have
plotted these values for 10 linearly-spaced values of o
in the range [0.5,3.2]. From these plots it is clear that
the proposed algorithm has achieved significantly better
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Fig. 1 Two typical one-dimensional profiles of the noisy and denoised projections simulated from the Shepp-Logan phantom. The thin blue curve
in each plot shows the corresponding noise-free projection. The left column is for the high-noise case and the right column is for the low-noise
case. a the noisy sinogram, b denoised using bilateral filtering, € denoised with NL-PCA, and d denoised with the proposed TV-based algorithm

denoising results than bilateral filtering and NL-PCA. close to 3.0 and the performance did not improve or
Best results with the proposed algorithm are achieved slightly deteriorated when o was increased beyond 3.2.
with A values around 0.1 and the denoising is too strong  The solid squares on these plots show the optimum value
for o > 1. For bilateral filtering, we found that best of the corresponding parameter (i.e., lowest RMSE or
denoising results were usually obtained for values of ¢  highest MI). The phantom profiles shown in Fig. 1 for the
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Fig. 2 Comparison between different denoising algorithms in terms of RMSE and Ml for the high-noise projections (top row) and low-noise
projections (bottom row) simulated from the Shepp-Logan phantom. Values for the bilateral filtering algorithm are plotted as a function of o (the
bottom horizontal axis), whereas the values for the proposed algorithm are plotted as a function of the regularization parameter A (the top horizontal

proposed algorithm and bilateral filtering were obtained
with the parameter values that resulted in the lowest
RMSE.

Real cone-beam projections of a physical phantom
Cone-beam projections were acquired from a physical
phantom using a Gamma Medica eXplore CT 120 micro-
CT scanner. The scanner had a flat panel detector. The
distance from the source to the detector and to the axis
of rotation were 449.29 mm and 397.04 mm, respectively.
We generated two scans of the same phantom:

1. Low-noise scan. Consisting of 720 projections
between 0° and 360° at 0.5° intervals. The tube
voltage, tube current, and exposure time were 70kV,
40 mA, and 25 ms, respectively.

2. High-noise scan. Consisting of 240 projections
between 0° and 360° at 1.5° intervals. The tube
voltage, tube current, and exposure time (per
projection) were 50kV, 32 mA, and 16 mAs,
respectively.

Since we do not have access to the true (i.e., noise-
free) projections, we compare the performance of the

denoising algorithms in terms of the quality of the
reconstructed images. We used the low-noise scan to
reconstruct a high-quality image of the phantom using the
Feldkamp-Davis-Kress (FDK) algorithm [34]. We will refer
to this as Rhe reference imagell To evaluate the denoising
algorithms, we applied them on the high-noise projec-
tions, reconstructed the image of the phantom from the
denoised projections using the FDK algorithm, and com-
pared the reconstructed image with the reference image.
Similar to the experiment with the simulated projections,
we performed the denoising for 10 linearly-spaced values
of o in the range [ 0.5, 3.2] for bilateral filtering. Similarly,
we ran the proposed algorithm with 10 logarithmically-
spaced values of A in the range [0.001,0.1]. Each pro-
jection was 875 x 568 pixels in size and the size of the
reconstructed image of the phantom was 880 x 880 x 650
voxels, with isotropic voxels of 0.1 x 0.1 x 0.1 mm?®.

In order to assess the overall quality of the reconstructed
images, we use the following two criteria:

(a) Root Mean Square of the Error (RMSE). Where error
is defined as the difference between the image
reconstructed from denoised projections and the
reference image.
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(b) Structural similarity index (SSIM) between the
reconstructed image and the reference image. SSIM
is used as a measure of the overall closeness of two
images and is defined as [35]:

(Cpapz + C1) 2oy + Co)
(1 + 1 +C1) + (02 + 07 + C)
where 11, and oy, represent the mean and standard

deviation of the image x, o,; is its covariance with
image &, and C; and C, are constants.

SSIM(x, %) =

The plots of RMSE and SSIM are shown in Fig. 3.
Compared with both bilateral filtering and NL-PCA, the
image reconstructed from projections denoised using the
proposed algorithm has a significantly lower RSME and
higher SSIM. Best results in terms of SSIM with the pro-
posed algorithm are obtained with A = 0.0129 and for
bilateral filtering algorithm with o = 2.6.

The plots in Fig. 3 reflect the overall closeness of the
images reconstructed from the denoised projections and
the reference image. The imaged phantom had different
modules that allowed for a more detailed evaluation of the
quality of the reconstructed images [36]. A set of fine coils
inside the phantom allow for visual inspection of the spa-
tial resolution in the reconstructed image. Figure 4 shows
two of these coils in the images reconstructed from noisy
and denoised projections. These coils have thicknesses
of 500 um and 200 um, corresponding to spatial reso-
lutions of 1 and 2.5 line pairs per mm, respectively. The
image shown for the proposed algorithm corresponds to
A = 0.0129 and the image shown for bilateral filtering
corresponds to ¢ = 2.6. As we mentioned above, these
parameter values led to highest SSIM. The images show
a marked improvement in the image quality via sinogram
denoising. It also seems that the proposed algorithm leads
to a smoother image without affecting the spatial res-
olution. In Fig. 5 we have shown a profile through the
center of the 500 — pum coil for the images reconstructed
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from noisy and denoised projections and also the differ-
ence between them and the reference image for a closer
comparison. It is clear from these profiles that the image
reconstructed from the projections denoised using the
proposed algorithm are closer to the reference image.

In order to compare the denoising algorithms in terms
of the trade-off between noise and spatial resolution, we
followed an approach similar to that suggested in [14].
Specifically, we computed the following two numbers as
measures of spatial resolution and noise level in the recon-
structed image of the phantom:

Measure of spatial resolution. The imaged phantom
included a slanted edge that consisted of a plastic-air
boundary, specially designed for accurate estimation of
the modulation transfer function (MTF). We used the
method proposed in [37] for estimation of the MTF over
the range of spatial frequencies between 0 and 5 mm~!.
As also suggested in [14], we use the spatial frequency at
which the normalized MTF reaches a value of 0.10 as a

representative number for spatial resolution.

Measure of noise level. A uniform polycarbonate disk
is included in the phantom for the purpose of assessing
the noise level in the reconstructed image. We selected
five cubes, each 10 x 10 x 10 voxels, at different locations
within this disk and computed the standard deviation of
the voxel values in each cube. We use the average standard
deviation of voxel values in these cubes as a measure of
noise level.

We computed the above two values for bilateral filter-
ing algorithm with 10 linearly-spaced values of o in the
range [ 0.5,3.2] and for the proposed TV-based algorithm
with 10 logarithmically-spaced values of X in the range
[0.001,0.1]. In Fig. 6, we have shown plots of these two
values for the three denoising algorithms. Note that a
high spatial resolution and a low noise level are desirable.
Therefore, all three denoising algorithms have improved
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Fig. 3 Performance comparison between different sinogram denoising algorithms in terms of RMSE and SSIM on the scan of the physical phantom.
Values for the bilateral filtering algorithm are plotted as a function of o (the bottom horizontal axis), whereas the values for the proposed algorithm
are plotted as a function of the regularization parameter A (the top horizontal axis). The solid squares indicate the points of optimum
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Fig. 4 The 200 — um (top row) and 500 — um (bottom row) coils in the images reconstructed from noisy and denoised projections of the physical
phantom; a the reference image, b without denoising, ¢ bilateral filtering, d NL-PCA, and e the proposed algorithm

the quality of the reconstructed image for the range of
parameter values used (except for A = 0.1 with the pro-
posed algorithm). Moreover, the proposed algorithm has
achieved better results than bilateral filtering and NL-
PCA. Specifically, for A €[0.0077,0.0359] the proposed
algorithm has achieved both higher spatial resolution
and lower noise than bilateral filtering (for any param-
eter value) and NL-PCA. In Fig. 6, we have also shown
plots of the MTF obtained with the three denoising algo-
rithms. All three sinogram denoising algorithms have led
to an improvement in the spatial resolution in the recon-
structed image. The proposed algorithm has resulted in
a higher MTF than bilateral filtering and NL-PCA for all
spatial frequencies.

Real cone-beam projections of a rat

We obtained a fresh rat carcass from our institutional
animal facility and used the same micro-CT scanner
described above to obtain post mortem images of the
rat thorax. Since the animal was obtained post mortem,
no ethical approvals were required for the micro-CT
scans. Because the internal organs of the rat constantly
moved, we were unable to create two identical scans
with different noise levels as we did for the phantom.
Therefore, we scanned the rat only once. The scan
consisted of 720 projections between 0° and 360°
at 0.5° intervals with the tube voltage, tube current,
and exposure time equal to 70kV, 32mA, and 16 ms,
respectively.

Similar to our approach in the experiment with the
physical phantom, since we do not have access to the true
projections, we evaluate the performance of the denois-
ing algorithms in terms of the quality of the reconstructed

images. To create a high-quality reference image from the
full set of 720 projections, we first reconstructed an initial
image using the FDK algorithm. Then, we used five itera-
tions of MFISTA algorithm [38] to improve the quality of
the FDK-reconstructed image. The resulting image had a
very high quality and we used it as the reference image for
evaluating the performance of the denoising algorithms.
We applied the denoising algorithms on a subset of 240
projections of the same scan (projections at 1.5° inter-
vals) and reconstructed the image of the rat using the FDK
algorithm.

Similar to the physical phantom experiment, we use
RMSE and SSIM as a measure of the overall closeness of
the reconstructed images to the reference image. Figure 7
shows these criteria for the three sinogram denoising algo-
rithms. From this figure, denoising of the projections with
the proposed algorithm has lead to superior results in
terms of RMSE and SSIM compared to bilateral filtering
and NL-PCA.

For a visual comparison, Fig. 8 shows a typical 2D
slice of the reconstructed images of the rat. For the pro-
posed algorithm and bilateral filtering, the images shown
in this figure are obtained using the parameter values
that resulted in the lowest SSIM, i.e., A = 0.0129 and
o = 2.6 (see Fig. 7). The window of the linear atten-
uation coefficient, u, used to display these slices was
[0,0.55]. To allow a better visual comparison, we have
selected two regions of interest (ROI) within this slice
and have shown them in zoomed-in views and with nar-
rower p-windows. The ROI shown on the top left of
each slice contains fat surrounded with soft tissue; this
ROI is shown with a magnification factor of 1.5 and
with a p-window of [0.15,0.20]. The ROI shown on
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Fig. 5 The left column shows a profile through the 500 — pm coil in the images of the physical phantom reconstructed from noisy and denoised
projections: a without denoising, b bilateral filtering, € NL-PCA, and d the proposed algorithm. In each of these plots in the left column, we have
included the profile of the reference image (the blue curves). For a better comparison of the denoising algorithms, in the right column we have
shown the difference between the profiles shown in the left column and the profile of the reference image

the top right of each slice contains bone surrounded These images show a strong positive effect for sinogram
with soft tissue; this ROI is shown with a magnifica- denoising in terms of the visual quality of the recon-
tion factor of 2.0 and with a p-window of [0.18,0.50].  structed image. Moreover, denoising with the proposed
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algorithm seems to have resulted in a higher-quality
image, especially in the soft-tissue ROIL.

In order to compare the denoising algorithms in terms
of the trade-off between noise suppression and spatial res-
olution, we again followed an approach similar to that
proposed in [14]. Specifically, we selected an ROI shown
in Fig. 9 and computed the following measures of noise
level and spatial resolution:

Measure of spatial resolution. We compute the maxi-
mum absolute value of the gradient (i.e., slope) along the
line L marked in the ROI shown in Fig. 9 as a measure
of spatial resolution. A sharper slope indicates a higher
spatial resolution and it will give a larger gradient.

Measure of noise level. We consider a cube of size
50 x 50 x 50 voxels, the cross-section of which is shown

in the displayed ROL From the reference image, we iden-
tified this cube as being highly uniform. Therefore, we
computed the standard deviation of the voxel values in
this cube as a measure of noise level.

The results are plotted in Fig. 9. This plot is very simi-
lar to the plot shown for the physical phantom experiment
in Fig. 6. The main observations are that all three sino-
gram denoising algorithms have improved the quality of
the reconstructed image in terms of spatial resolution and
noise level, and that the proposed algorithm can outper-
form the bilateral filtering algorithm and NL-PCA with
the right selection of the regularization parameter. Specif-
ically, with A €[0.0129,0.0359], the proposed algorithm
has resulted in lower noise and better spatial resolution
than bilateral filtering (with any choice of o) and NL-PCA.
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Fig. 7 Performance comparison between different sinogram denoising algorithms on the rat scan. Values for the bilateral filtering algorithm are
plotted as a function of o (the bottom horizontal axis), whereas the values for the proposed algorithm are plotted as a function of the regularization
parameter A (the top horizontal axis). The solid squares indicate the points of optimum
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Fig. 8 A slice of the image of the rat reconstructed from noisy and denoised projections: a the reference image, b without denoising, ¢ bilateral
filtering, d NL-PCA, and e the proposed algorithm. The locations of the selected ROls have been marked on the reference image (a). This slice is
through the thorax just below the carina (where the trachea divides into left and right bronchi)

Computation time

In order to compare the computational time of the pro-
posed algorithm with that of bilateral filtering and NL-
PCA, we considered the denoising of 240 projections of
the rat. As we mentioned above, each projection was
875 x 568 pixels. The proposed TV-based algorithm
implemented in Matlab version R2012b and executed on a

Windows 7 PC with 16 GB of memory and 3.4 GHz Intel
Core i7 CPU needed approximately 6 minutes to denoise
all 240 projections. In comparison, bilateral filtering and
NL-PCA needed 8.5 minutes and 42 minutes, respec-
tively, for the same denoising task. In general, patch-based
denoising methods such as NL-PCA require long compu-
tational times. Nevertheless, sinogram denoising methods
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are in general much less computationally intensive than
iterative reconstruction methods. A single forward or
back projection using fast algorithms such as the separable
footprints algorithm [39] or the distance-driven algorithm
[40] takes approximately 2 hours on the same computer;
each iteration of an iterative reconstruction algorithm
needs one forward-projection and one back-projection.
Of course, it is becoming very common to implement
iterative reconstruction methods on GPU, but the same
can also be done for sinogram denoising algorithms.
Sinogram denoising is by nature highly parallelizable
because each projection can be denoised independently of
others.

Conclusions

Sinogram denoising can be a very effective approach
to improving the quality of low-dose CT images. In
this paper, we presented a fast and efficient method for
denoising of low-dose CT projections. The performance
of the proposed method on simulated and real CT pro-
jections shows that this method can lead to a substantial
reduction in the noise level without degrading the spatial
resolution. Our results show that the proposed algorithm
is superior to bilateral filtering and NL-PCA in terms
of denoising performance and computational speed. The
proposed method is based on the assumption that the true
image has a sparse gradient. Although algorithms based
on this assumption have proved successful in image pro-
cessing, CT projections are likely to not fit this model very

well. This is because projections of piece-wise constant
objects are not in general piece-wise constant, rather
they are piece-wise smooth. It is well-known that TV-
denoising of piece-wise smooth images can result in stair-
case artifacts in the denoised image. Our approach of local
denoising reduces the risk of staircase artifacts. Another
approach to reducing these artifacts is to consider higher-
order differentials in the model. Such a formulation may
lead to results comparable to those reported in this paper,
but the optimization algorithms involved will be signifi-
cantly more complicated. We consider this approach as a
future work.
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