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Abstract

Background: Subtraction of Dynamic Contrast-Enhanced 3D Magnetic Resonance (DCE-MR)
volumes can result in images that depict and accurately characterize a variety of liver lesions.
However, the diagnostic utility of subtraction images depends on the extent of co-registration
between non-enhanced and enhanced volumes. Movement of liver structures during acquisition
must be corrected prior to subtraction. Currently available methods are computer intensive. We
report a new method for the dynamic subtraction of MR liver images that does not require
excessive computer time.

Methods: Nineteen consecutive patients (median age 45 years; range 37—67) were evaluated by
VIBE T|-weighted sequences (TR 5.2 ms, TE 2.6 ms, flip angle 20°, slice thickness 1.5 mm) acquired
before and 45s after contrast injection. Acquisition parameters were optimized for best portal
system enhancement. Pre and post-contrast liver volumes were realigned using our 3D registration
method which combines: (a) rigid 3D translation using maximization of normalized mutual
information (NMI), and (b) fast 2D non-rigid registration which employs a complex discrete wavelet
transform algorithm to maximize pixel phase correlation and perform multiresolution analysis.
Registration performance was assessed quantitatively by NMI.

Results: The new registration procedure was able to realign liver structures in all 19 patients. NMI
increased by about 8% after rigid registration (native vs. rigid registration 0.073 + 0.031 vs. 0.078
1 0.031, n.s., paired t-test) and by a further 23% (0.096 £ 0.035 vs. 0.078 £ 0.031, p < 0.001, paired
t-test) after non-rigid realignment. The overall average NMI increase was 31%.

Conclusion: This new method for realigning dynamic contrast-enhanced 3D MR volumes of liver
leads to subtraction images that enhance diagnostic possibilities for liver lesions.

Background many types of liver lesion [1-8]. Volumetric Interpolated
Dynamic Contrast-Enhanced 3D Magnetic Resonance  Breath-hold Examination (VIBE) sequences yield images
Imaging (DCE-MRI) detects and accurately characterizes  of the entire abdomen with high spatial resolution, nearly
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isotropic voxel size (2 mm or less) and short acquisition
time (<25s) [9-11]. In DCE-MRY, the liver is imaged dur-
ing breath-hold (reducing respiratory motion artifacts)
before and after the injection of contrast in selected
phases of contrast distribution (typically early and late
hepatic arterial phases and portal venous phase). Imaging
the portal phase is important for detecting and character-
izing hypovascular lesions and metastatic deposits, partic-
ularly colon cancer secondary lesions [1,4,5].

The application of a technique to subtract pre- from post-
contrast images [12-14] makes it easier to pick out and
characterize lesions, by eliminating common background
signals and emphasizing hyper (or hypo) enhanced struc-
tures. However, subtraction is not a trivial operation: liver
structures may move or deform between the two acquisi-
tions and a registration procedure is required to realign
structures prior to subtraction [12]. In a study where sub-
traction was applied without registration, the resulting
image was not diagnostic for most (73%) subcentrimetic
lesions [13]. Various algorithms have been proposed for
the registration of liver volumes, and applied to MRI-
guided ablation of liver cancer [15], the planning of sin-
gle-dose radiation therapy [16-18] and liver surgery [19].
Alignment by maximization of mutual information (MI)
[23-25] is usually performed. In one study [15], MI was
found to be the best of five methods for the registration of
DCE-MR images of the liver.

The registration strategy must also take into account the
fact that the main component of liver motion is a global
cranio-caudal excursion, due to diaphragm movement
during respiration [31]. Deformations may also be impor-
tant since liver is a soft tissue [32,33]. Although solely
rigid registration methods have been proposed [15,16],
the current trend is towards registration strategies that
combine rigid and non-rigid approaches [17,20]; however
maximization of MI in a non-rigid framework requires
long processing times that may limit clinical application.

We report a new 3D registration method for the dynamic
subtraction of volumetric liver images, that combines
rigid and non-rigid approaches, and yet is light on compu-
tational cost. Rigid registration was obtained by volume
translation, maximizing normalized MI between two vol-
umes, while local 2D non-rigid realignment employed a
Complex Discrete Wavelet Transform (CDWT) algorithm.
The CDWT algorithm we used has been applied to the reg-
istration of MR images of the breast [28] where it has been
shown to be fast, robust and reliable [27]. We present and
discuss the application of this method for characterizing
liver lesions during portal phases.

http://www.biomedcentral.com/1471-2342/6/5

Methods

Experimental protocol and image acquisition

The algorithm was tested in an experimental protocol
developed at the Department of Images for Diagnosis and
Therapy of the National Cancer Institute of Milan and car-
ried out September through November 2004. We exam-
ined 19 consecutive patients of median age 45 years
(range 37-67) with suspected primary or metastatic liver
parenchyma lesions following US or CT examination. All
patients underwent 1.5 T MR imaging (Siemens Vision,
Erlangen). VIBE T1-weighted sequences (TR 5.2 ms, TE 2.6
ms, flip angle 20°, slice thickness 1.5 mm) were acquired
(axial orientation) before and 45s after contrast agent
injection. Acquisition parameters were optimized to best
enhance the portal system; 70 to 112 slices per volume
were acquired depending on liver size. Breath-holds were
at exhale and lasted 21-26s. Gd-DTPA and Gd-BOPTA
were used as contrast agents: 0.2 mmol/kg was injected in
asingle bolus at 1.5-2 ml/s followed by 20 ml physiologic
saline (0.09% NaCl) at the same rate to accelerate contrast
dissemination to the central venous system.

Image preprocessing

To improve image quality before registration, including
reducing image noise and liver segmentation, the follow-
ing pre-processing steps were applied.

Volumetric acquisitions have lower signal-to-noise ratio
than 2D acquisitions [29]. Superimposed noise may
reduce the efficiency of registration [27] and image noise
is amplified by volume subtraction thereby reducing the
possibilities for structure detection and tissue characteri-
zation. Classical noise filtering techniques introduce blur-
ring [30] and reduce spatial resolution and are therefore
not suitable. To attenuate noise while preserving image
details, an adaptive filter designed for brain MR images
was used [30]. Briefly, the filter works as follows: for each
pixel (x,y), a limited homogeneous region enclosing the
pixel (template) was searched. The filter output T(x,y) was
calculated using the following adaptive 2D formula:

2 2
oi, (x,y)(x,y)+0,m;
T(x,y) = k( VI(x,y) n'tj

2 2
O} (x' )/) +0y,

where
2 2 2
o, (xy) = max(0, o7 (x,y) - 0y)

. 2 . . .
and where m; is local mean, o7 (x,y) is the image variance

(computed on the template) and cr,% is noise variance

(defined a priori). The filter implies a tradeoff between
smoothing efficiency and preservation of discontinuities.
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In accordance with previous suggestion [15-17], only liver
voxels were considered in the registration algorithm, since
other abdominal organs may have motion relative to the
liver [31] and thereby confound realignment. The liver is
usually segmented to exclude uninteresting structures
from the registration. We performed manual liver seg-
mentation [15]: after selecting the slice with maximum
area of liver, an irregular polygon (mask) was inserted
manually to define the liver outline and exclude other tis-
sues. The mask was then applied to all other slices in the
volume. Upper and lower slices, where liver formed a
small fraction of the total mask area, were excluded.

Image registration

Liver motion was modeled by a rigid 3D translation to
compensate for cranio-caudal movements and by a 2D
local non-rigid registration to compensate for deforma-
tion within the slice plane.

Rigid registration results in rough realignment of the two
volumes, producing slice-to-slice  correspondence
between the pre- and post-contrast datasets, while non-
rigid registration locally refines the rigid realignment.

Rigid registration

Rigid 3D translation was achieved using normalized
mutual information (NMI) as the intensity-based similar-
ity measure [25]. NMI is defined as:

_ H(T(11))+ H(I,) (1)
H(T (1) I)

where I, is the pre-contrast image, I, the post-contrast
image, T is the estimated translation and T(I,) is I, cor-
rected for the motion field; H(I,) and H(T(I,)) are the
entropies of the images I, and T(I,) respectively, and
H(I,,T(1,)) is their joint entropy. In order to reduce com-
putation time, only translations were considered. With
the patient supine, rotations are negligible and anyway
mainly occur around the z-axis [33]. Any rotations around
this axis can be corrected in the subsequent 2D non-rigid
registration step.

NMI

Non-rigid registration

The 2D non-rigid registration method relies on an adapta-
tion of the algorithm of Magarey [26,27] originally
applied for video coding. The algorithm is applied to each
images pair of pre- and post-contrast volumes (Figure 1).
There are four main steps in the algorithm.

(a) Image analysis

A CDWT pyramid is applied to the pre-contrast image (I;)
and the post-contrast image (I,). The CDWT analyses each
image I(n) using banks of wavelet filters W(n) and scaling
filters ®(n) whose outputs are downsampled.

http://www.biomedcentral.com/1471-2342/6/5

In particular, we have:

DU (n) = 3 1K)y "™ (2" n - k) (2)
k
1) = 3 10)"™ (2" n - k) (3)
k

where ¥(n) and ®(n) are complex valued Gabor-like fil-
ters; p=1,2and g = 1, ..., 6, so that at each level there are
eight complex outputs. I(1) and I(2) are images of lower
resolution corresponding to inputs at the next level m + 1.
D(m) are the downsampled bandpass subimages of I.
Each wavelet filter, and its corresponding subimage, has a
characteristic orientation specified by the spatial fre-
quency Q. In the spatial frequency domain, the six fil-
ters cover the first and the second quadrants which
contain non redundant information for image analysis.

(b) Multiresolution

At each level m of decomposition, the CDWT produces 6
oriented bandpass subimages, with resolution 1/2 times
that of the original image. The algorithm starts estimation
at the coarsest level mmax, using the bandpass subimages
to produce one motion estimate at each pixel. The field

max
density is therefore 2™ , i.e. one vector per block of

max

om™ o gm™ input pixels. After interpolating by 2 in
each direction, the estimation field is used as input to esti-
mate at the next finer level, along with the 12 bandpass
subimages at that level.

() Registration criterion

The principal part of the estimate of the motion field (MF)
is the figure of merit based on the CDWT coefficients,
known as the subband squared difference (SSD) and defined
at each level as follows:

2
. 6 ‘ D™ (n + £) - DY (n)
SSD™(n,f) = Z S (4)
g=1

where D,(@m)(n+f) and D,@m(n) are the CDWT coeffi-
cients at level m as obtained by decomposition of images
I, and I, respectively, and where P(@m) is the energy of
each wavelet filter. The SSD is a local measure, computed
for each pixel n. It can be shown that for a small offset, a

2D quadratic model fits the SSD expression,

SSD™(n,f) ~ %(f- L) K(f-£)+5  (5)
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Hierarchical algorithm structure. CDWT decomposition is applied to the pre-contrast and the post-contrast images. At
each level the CDWT produces 6 bandpass subimages per image that are then used to estimate the motion field (MF). The
estimation starts at the coarsest level and progresses to the finest level.

where the minimum value £ is the motion estimate at the
pixel n. The surface parameters {f,, k, 6} (the minimum
location, the curvature matrix and minimum height of the
surface, respectively), are computed directly from the
coefficients D, (@m(n+f), and D,(@"(n) and the spatial fre-
quency Q4m, It turns out that f, depends heavily on the
phase of the two complex coefficient vectors, while the
magnitudes have comparatively little influence. This
property renders the algorithm insensitive to global per-
turbations such as level shifts and intensity scaling.

Note that it is possible to obtain f;, from equation (5) by
analytical calculation, providing a very efficient way of
computing f over a real interval of values, and avoiding
the need for a time-consuming search over a discrete set of
candidate solutions.

(d) Course to fine refinement

SSD is computed at each decomposition level. After esti-
mation at the coarsest level (m = m™ax) motion estimates
and other surface parameters used as starting values
(using bilinear interpolation to double the field density)
at the next finer level (m = m™max - 1). Hence the surfaces

SSD™"" ! are added to those from level mmax to give

cumulative SD surfaces CSD™ ! . The CSD surfaces are
then used as inputs to the next finer level mmax- 2, and the
procedure is repeated until the required level of detail,
given by mmin is reached. Finally the pre-contrast image is
warped using the obtained motion field. A bilinear inter-
polation is used for non-integer locations.

Page 4 of 9

(page number not for citation purposes)



BMC Medical Imaging 2006, 6:5

Results

Quantitative performance

The new registration procedure was able to correct image
movement to thereby produce improved subtraction
images in all patients as determined by NMI assessment to
compare pre- and post-contrast volumes.

Figure 2 shows NMI values at prior to registration, after
rigid registration and after non-rigid registration. NMI
increased by about 8% after rigid registration (0.078 +
0.031 vs. 0.073 + 0.031, mean + SD, n.s., paired t-test),
and by a further 23% (0.096 + 0.035 vs. 0.078 + 0.031, p
< 0.001, paired t-test) after non-rigid realignment. The
overall increase was 31% compared to before registration.
Rigid registration increased the NMI in 13/19 cases (thus,
in 6 cases, the liver had not undergone cranio-caudal
movement and the original volumes were already
aligned), while non-rigid registration increased NMI in all
cases.

Clinical application

Representative subtraction images before and after regis-
tration are shown in Figure 3. Note that after realignment,
anatomic details are better visualized, the high signal
intensity artifact at the edge of the liver has been elimi-
nated, and enhanced structures (lesions and vessels) are
better defined and not blurred by misalignment.

The diagnostic utility of subtraction images was scored by
two expert radiologists in abdominal and liver MR imag-
ing, by comparing registered subtraction images with the

&k

]
|

o
S -
]

T T T

NMI
o

none rigid nonrigid

Figure 2

NMI box plots. Box-plots show NMI values for all 19 cases
during the various phases of the registration algorithm. The
red lines show increased median values after rigid (0.0673 vs
0.0726) and non-rigid registration (0.0726 vs 0.0891). (*n.s.,
**p < 0.001)
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corresponding VIBE post-contrast images, and assigning a
clinical score in the range 0-5, based the presence/
absence of specific image characteristics such as third and
fourth order portal rami, clarity of parenchyma, confi-
dence of lesion identification, and minimun size of
securely identified lesions. After registration, subtraction
images had better clinical scores (3.20 + 0.84 vs. 2.40 +
0.55, p < 0.01, paired t-test) than VIBE post-contrast
images. In all cases in subtraction images smaller lesions
were more easily identified and small clusters of lesions
were resolved into multiple adjoining small lesions.

Figure 4 shows a cirrhotic patient previously treated by
percutaneous resection and percutaneous ablation of
HCC and re-evaluated for suspected relapse. The TI-
weigthed 2D image in early arterial phase post-contrast
shows early uptake by a plurinodular relapse (4a). The
subtraction image of the same slice after registration
shows early and complete lesion wash-out typical of nod-
ular HCC relapse and shows no other areas of late uptake
that would suggest A-V shunt or other post-treatment vas-
cular anomalies. The site, size and number HCC nodules
were confirmed at histology.

In Figure 5 a treated liver lesion was evaluated by triphasic
and late dynamic contrast-enhanced MRI. Post-treatment
evaluation is vital for identifying minimal residual disease
and thus deciding further management options. The por-
tal phase 3D-VIBE post-contrast media image (5a)
appears to show weak but diffuse lesion enhancement.
The corresponding subtraction image after registration
shows complete absence of enhancement at lesion center
and margins. The displaced hepatic veins at the periphery
of the lesion are well-demonstrated.

Figure 6 shows a dynamic contrast-enhanced image taken
during follow-up of a patient with breast cancer. The 3D-
VIBE image (6a) in late arterial-portal phase shows two
inhomogeneous areas of weak contrast enhancement,
with poorly defined borders in the parenchyma. These
lesions are only suspicious for metastasis. In correspond-
ing subtraction image after registration (6b) the lesions
are more conspicuous, which uniform intense contrast
uptake and sharper borders clearly indicating breast can-
cer metastasis. The lesions were biopsied and found to be
metastatic breast cancer on histologic examination.

Discussion and conclusion

We have presented and assessed a new approach to the
registration of volumetric DCE-MR liver images. The
method which realigns liver volumes using two proce-
dures (rigid 3D translation followed by 2D non-rigid rea-
lignment using a CDWT algorithm) produced a
significant increase of NMI (of about 31%). Subtraction
images obtained after realignment showed, in compari-
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Figure 3

Comparison between subtraction images. Subtraction images before [left] and after [right] registration. In the right note
the portal and hepatic veins, their course and the better identification of several anatomic details. Recognition of the enhancing
lesion in 8th segment is improved (open arrow in the right image). It is clear on the subtracted image after registration that the
round zone of enhancement in 4th segment is not a focal lesion but a branching portal ramus (white arrow in the right image).
Finally, the high signal intensity artifact on the lateral and anterior margins of the liver disappears after registration (arrows in

the left image).

Figure 4

HCC Relapse after treatment. Tl-weighted 2D post-contrast image [left] and corresponding 3D subtraction image [right].
The arrow shows the lesion. The subtraction image shows complete wash-out indicating HCC (confirmed histologically). See
text for further details.
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Figure 5

Treated liver lesion. Tl-weighted 3D post-contrast image [left] and corresponding 3D subtraction image [right]. The sub-
traction image shows complete absence of enhancement at the margins of the treated liver lesion that displaces the hepatic
veins. Follow up confirmed absence of residual tumor. See text for further details.

Figure 6

Metastatic liver lesions from breast cancer. Tl-weighted 3D post-contrast image [left] and corresponding 3D subtraction
image, [right]. The arrows show metastatic lesions from breast cancer, better reveled in the subtraction image. See text for
further details.

Page 7 of 9

(page number not for citation purposes)



BMC Medical Imaging 2006, 6:5

son to VIBE post-contrast images, improved clinical utility
as shown by clinical score.

Registration of hepatic volumes is not trivial because liver
is a soft tissue undergoing considerable movement during
respiration [18,20,33]. We approached the problem of
hepatic volume realignment by a combination of rigid
(only translations) and non-rigid registrations, as also
suggested by other authors [17]-[20]. Rigid registration is
usually employed to pre-align the two volumes (compen-
sating for macroscopic liver movement in cranio-caudal
direction) and aid the successive non-rigid registration to
quickly converge to the optimal solution [21]. Non-rigid
registration is usually based on maximization of NMI
between two volumes and the transformation model is
usually free-form 3D deformation defined on a control
point grid (CPG) with cubic B-spline interpolation [18-
20] or thin-plate spline interpolation [17]. Finally, a mul-
tiresolution strategy is usually employed to model both
large displacement and small differences (following a
coarse-to-fine strategy) and to improve the robustness and
efficiency of registration. Although these approaches have
been shown to be quite accurate [18,19], their main draw-
back is that they are time consuming. The performance of
this registration method is also limited by the resolution
of the CGP mesh, which is linearly related to computa-
tional complexity.

Improvements in computation time were obtained using
a flexible framework [22] that permits non-uniform con-
trol point spacing to restrict deformation to localized
regions of the image pair, excluding regions where the
images are already in realignment or have been identified
as rigid bodies.

In the approach we have developed, non-rigid 2D registra-
tion was performed using a CDWT algorithm with two
main advantages: it is efficient for muliresolution analysis
[26], and the CDWT coefficients contain, for each level,
the information necessary for registration [27]. The
motion field is obtained simply, pixel-by-pixel, as the
minimum of a quadratic surface defined by the CDWT
coefficients at each level. This results in the method being
fast as there is no need for an exhaustive iterative search of
the best solution. It has been estimated that registration
normally requires 1.5 kflops/pixel [27]. In our Matlab
implementation, registration of the entire liver (roughly
90 slices) took on average 3 minutes, running on a normal
PC. It is likely that an implementation in C would be
faster. Finally, all voxels contribute individually to defin-
ing the motion field, and hence registration does not
require a priori definition of an elective CGP.

Our approach performs a multiresolution phase-based
registration. It is therefore insensitive to the pixel intensity

http://www.biomedcentral.com/1471-2342/6/5

scale, shift, and additive Gaussian noise [26]. Although
the CDWT algorithm does not maximize NMI directly, we
found that NMI was significantly greater after realign-
ment.

When rigid and non-rigid registration steps were com-
pared we found, in agreement with a previous study [18],
that substantial residual deformation often remained after
rigid registration and an additional non-rigid approach
was therefore required. Algorithms for the realignment of
liver structures have been developed to merge MR and CT
studies, emphasizing the enhancement of vascular struc-
tures for planning surgery [19] radiotherapy [16-18] or to
quantitatively evaluate liver deformation [20,32,33]. Sur-
prisingly, little attention has been paid to the application
of registration techniques to produce improved subtrac-
tion images of the liver, although similar techniques have
been developed for other organs [14,28]. Recently,
dynamic subtraction MRI was used to characterize lesions
in cirrhotic patients although small lesions were not
shown optimally [13]. The authors concluded that mis-
registration limited the qualitative assessment of lesions
<2 cm in size. Using our method subcentimetric lesions
were frequently identified. We note finally that our algo-
rithm was tested and validated on portal images only.
Phase-based registration algorithms are insensitive to
shifts in pixel intensity but they could fail on intensity-
reversed images, such as those acquired during late portal
phase or at equilibrium.
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