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Abstract

Background: Temperature measurement is a vital part of daily neonatal care. Accurate measurements are important for
detecting deviations from normal values for both optimal incubator and radiant warmer functioning. The purpose of
monitoring the temperature is to maintain the infant in a thermoneutral environmental zone. This physiological zone is
defined as the narrow range of environmental temperatures in which the infant maintains a normal body temperature
without increasing his or her metabolic rate and thus oxygen consumption. Although the temperature measurement
gold standard is the skin electrode, infrared thermography (IRT) should be considered as an effortless and reliable tool
for measuring and mapping human skin temperature distribution and assist in assessing thermoregulatory reflexes.

Methods: Body surface temperature was recorded under several clinical conditions using an infrared thermography
imaging technique. Temperature distributions were recorded as real-time video, which was analyzed to evaluate mean
skin temperatures. Emissivity variations were considered for optimal neonatal IRT correction for which the compensation
vector was overlaid on the tracking algorithm to improve the temperature reading. Finally, a tracking algorithm was
designed for active follow-up of the defined region of interest over a neonate’s geometry.

Results: The outcomes obtained from the thermal virtual sensor demonstrate its ability to accurately track different
geometric profiles and shapes over the external anatomy of a neonate. Only a small percentage of the motion detection
attempts failed to fit tracking scenarios due to the lack of a properly matching matrix for the ROI profile over neonate’s
body surface.

Conclusions: This paper presents the design and implementation of a virtual temperature sensing application that can
assist neonatologists in interpreting a neonate’s skin temperature patterns. Regarding the surface temperature, the
influence of different environmental conditions inside the incubator has been confirming.
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Background
Recently, the rapid improvement in medical thermog-
raphy technologies in various clinical fields has promoted
the use of thermography imaging as a contactless physio-
logical sensor. In particular, neonatal intensive medicine is
a clinical field in which infrared thermography may play a
future role in non-invasive monitors.
Initially, Clark et al. [1] performed the first clinical tri-

als using direct thermography measurement in neonates,
which was dated back to 1980. To perform non-invasive
skin temperature measurements, the setup included a
hole in the roof of the incubator and the assistance of a
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mirror system; these additions [1,2] allowed for real-time
measurements of thermal reputation.
Adams et al. [3] achieved successful direct thermog-

raphy imaging in the earliest minutes of life by using a
long-wave infrared (LWIR) system. In that project, con-
tinuous thermal monitoring of the neonate was accom-
plished at intermittent intervals ranging between 20 and
30 minutes at the initial stage. Then, a modified protocol
was defined to monitor preterm infants inside a convective
incubator, kangaroo mother care, and open radiant warmer.
The results were compared with values obtained from mul-
tiple weighted measurements of resistance temperature
device (RTD) sensors.
Pavlidis et al. [4-6] developed a tracking system for infra-

red thermography as part of an augmented computer
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vision system. This development was based on a coali-
tional tracking approach in which a distinct region of
interest (ROI) was defined over the neonate’s face and its
position was tracked over numerous infant motion planes.
Recently, Abbas et al. [7] developed a concept for non-

contact respiration monitoring in infants based on IR
thermography (IRT). This technique also tracks the nos-
trils’ thermal signature to detect the infant’s breathing
rate at a distance, and it provides an insightful analysis
of possible error sources within the neonatal IRT (NIRT)
imaging technique. The need for a robust and intelligent
temperature monitoring methodology has increased, which
makes NIRT imaging a suitable candidate for contactless
temperature measurement and observation inside neonatal
intensive care unit (NICU) facilities [2,8].
The NIRT method demonstrates good outcomes for the

real-time and continuous quantification of a neonate’s sur-
face and core temperatures; however, it lacks the ability to
estimate the real temperature value on a neonate’s body
surface accurately. This lack of reliability is mainly due to
the unknown emissivity, ε. For reference, the experimenter
could utilize an emissivity value ε for a known material
surface or could utilize fabric supplies, such as a hand
band or head caps, sutured with a material of known
emissivity, such as copper, polished steel, or polyvinyle-
flouride electrical tape (e.g., scotch-764). However, in such
clinical study, it is impossible to use like material due to
the hygienic and disinfection concern that roses within
the utilization of these material inside infant incubators.

Thermal imaging
Radiation in the long wave infrared (LWIR) bands (8-14
μm) is important because the human body emits most of
its thermal radiation, which encodes valuable physiologic
information, in this region of electromagnetic spectrum.
This vital information, if properly processed and analyzed,
may be used in many biomedical applications, such as
mean body temperature mapping and arterial pulse mea-
surements [6,9,10]. A solid base that includes an under-
standing of the physics of image formation principles, the
choice of imaging IR band, and instrumentation is crucial
for successful biometrics signature processing. Such signa-
tures include superficial vessel blood flow [11], forehead
mean temperature, and nostril thermal patterns [4,12-14].
Possible IRT tracking and monitoring sites on a neo-

nate’s body are displayed in Figure 1; these spatial points
will be the reference sites for virtual temperature sensing
as the issue is discussed further in this paper.
Thermography imaging offers a high-quality concept for

the observation and monitoring of different physiological
processes [8,15,16]. Recently, we used IR thermal imaging
to monitor and map the temperature distribution over the
preterm infant’s body [12,17,18]. We believe that this tech-
nique will become an alternative technique in the future
to gold-standard technologies in neonatal temperature
monitoring and control [19].

Methods
All measurements were performed using a VarioCAM®
hr head (InfraTec GmbH, Germany) IR camera (LWIR,
7 μm to 14 μm). The camera transferred the thermal map
to a PC via the IEEE 1394 FireWire interface. The neo-
nate’s thermal images were taken inside a convective infant
incubator (Caleo, Draeger AG, Germany) and converted to
a 2D array containing temperature information within the
LabVIEW software platform. Additionally, these data were
used to test the algorithm software’s ability to track the
specified virtual temperature sensor points on a neonate’s
skin after motion. Figure 2 illustrates a typical setting for
NIRT clinical study inside a convective incubator.

Thermography imaging experiment design
Only ten newborn infants were selected to participate in
the clinical study, five of them were under radiant warmer
therapy and the rest are placed inside convective incuba-
tor. A referential ground truth measurement was imple-
mented by using skin temperature electrodes as gold
standards. The accuracy of these clinical skin electrodes is
(± 0.1°C). The NIRT imaging and measurement was per-
formed at the Department of Neonatology (RWTH
Aachen University Hospital), and this has been approved
by the medical ethics committee of the RWTH Aachen
University Hospital, issued on 19 August 2009 with refer-
ence code (EK032/09). The acquired thermography data-
sets used for testing the tracking algorithm. Each dataset
contained one measurement scene consisting of a newborn
infant undergoing thermography inside a convective incu-
bator or under a radiant warmer. The tracking time was
approximately 20 minutes for each subject with a frame
rate of 25 fps, and the measurements were conducted as a
real-time imaging operation. In principle, a higher frame
rate (up to 50 fps) could be achieved; however, a higher
frame rate would increase the size of the thermography
data to an out-of-memory level in many PCs.
Principally, the selected thermography datasets often

included involuntary movements of the neonate during
the 20 minutes of thermography acquisition time. The
thermography data featured out-of-plane rotation of the
facial tissue, hands, feet, and main trunk as the neonates
rotated their heads left, right, up, down, or in a random
motion. For covering all planes and geometry of the neo-
nate, we configure and selected ROI over the neonate’s
skin to guarantee effective temperature detection over
examination time (Figure 3).
A ring-projection transformation was selected in the

tracker hierarchy to be compared against the active ROI
tracker. The calibration phase of the IR camera was per-
formed directly throughout the measurement time. The



Figure 1 Positions of different possible locations of the virtual temperature sensor developed for NIRT. Directing from (a) initial position
of black window (on face) as reference sensor and white windows as ancillary points showing spatial variation over (b, c, d and e) to register
different temperature of the neonate and incubator.
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typical NIRT protocol sequence used in this study ex-
plained in Figure 4, in which the NIRT measurement
phase indicates different intervals throughout time.

IR thermal camera calibration setting
The calibration process of the thermal camera took place
inside the NICU ward in synchronization with the NIRT
measurement phases [20]. This process is called automatic
non-uniformity calibration (ANUC), and the procedure
Figure 2 Experimental setup of the NIRT Clinical study by using thermog
measurement (a) 3D schematic for components and elements of the setu
unit, (3) analysis workstation, (4) IR camera and (5) infant with two skin e
compensates for temperature drift during measurements.
In addition, the selected field of view (FOV) for the camera
assured that there is no influence on thermography reso-
lution during NIRT imaging despite the inclined side angle
of the thermal camera within the allocated FOV. This was
confirmed during analysis and modeling of heat fluxes dis-
sipated from neonate within NIRT measurement [19].
Temperature and humidity variations inside the con-

vective incubator are commonly considered the main
raphy imaging technique in association with a clinical temperature
p (1) patient monitoring system, (2) convective infant incubator
lectrodes connected. (b) Photograph of typical clinical setting.



Figure 3 Virtual geometric profiles utilized in ROI tracking for NIRT images (a) and the corresponding profiles over the neonate’s body
(b), which will be tracked throughout all of the video frames (the perspective of the overhead ROI changes).
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factors that prevent accurate temperature calibration.
Therefore, to avoid any incorrect temperature registra-
tion and physical related errors in NIRT imaging, the
calibration process was implemented during the clinical
measurement using the IRBIS® Professional software of
the IR camera. Objects of interest (OOIs) inside the ac-
quired thermogram were selected and the environmental,
incubator and object settings were performed through an
IR transparent window (with 0.01 mm thickness) made of
polyethylene (PE) material [3].
The transmission of IR radiation through the foil is be-

tween 0.92 and 0.94. Therefore, this transparent foil was
chosen to block the opened incubator clapper while
allowing the baby inside the incubator to be visualized
because the Plexiglas® material of the incubator hood is
an IR-reflecting material with emissivity values reaching
0.97 [1,21].
Figure 4 NIRT protocol used in the virtual sensor tracking. (a) ROI pro
the neonate prior to NIRT imaging.
A geometric correction was applied to the acquired
thermography using selected region of interests (ROI) over
the neonate’s skin and setting the physical parameters (e.g.,
incubator air temperature, outside window temperature,
humidity, IR transmission of PE thin-foil and body tem-
perature) for optimal thermography correction. Figure 5
shows the difference in calibration setting between different
thermography scenes where in scene (a) the thermography
imaging performed through IR-transparent window and in
scene (b) thermography imaging performed directly with-
out interfering media [19].
Moreover, the data were registered against an emissiv-

ity equal to unity (considering neonatal skin as a typical
blackbody radiator), although the actual value of emis-
sivity was equal to 0.972 [22,23]. This correction strategy
plays a vital role in accurate temperature mapping be-
cause any slight difference in the emissivity value will
files located over the neonate’s skin (b) and an alternative layout of



Figure 5 Two thermograms showing the effect of geometric correction of the neonate, it is noticed that the neonates skin
temperature in thermogram (a) with higher value than in thermogram (b) of the same neonate, therefore, correction step prior to
NIRT imaging is important for accurate thermography acquisition.
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tend to add inaccuracies to the temperature reading
from the IR camera.

Thermal virtual sensor architecture
The term “Virtual InfraRed SENSor” (VIRSENS) relates to a
sensing method based on augmented visual or physical mea-
surements. In this work, a virtual temperature sensor was
developed wherein contactless temperature measurements
essentially replace the clinical gold standards. Furthermore,
virtual sensor tracking software was developed using Lab-
VIEW® Vision Assistance (National Instruments®) as an inte-
grated toolkit. This software allowed the thermal camera to
be connected directly the LabVIEW console by using a na-
tive interface file provided by the manufacturer (Figure 6).
Thermography acquisitions began after IR camera cali-

bration and were followed by the extraction of the thermal
data from the color space of the image; this task formed a
crucial step of the VIRSENS concept. Moreover, the selec-
tion of the ROI array was initiated afterward to set the
tracking coordinates of the neonate’s body regions to be
implemented the image-processing loop and architecture
(Figure 7).

Tracking technique
The key aspect for robust virtual sensing is the tracking
method, which should accurately monitor the motion
Figure 6 Architecture of thermography imaging acquisition within th
of the target surface even in the presence of partial occlu-
sion or deformation [24]. This tracking system is applied
to follow the motion of the target’s outline (and not only
superficial features) [25-28]. Generally, motion tracking is
not a straight forward process; it depends on the proper
definition of the tracked anatomical geometry and the
ability to follow-up and mark the defined ROI over mul-
tiple thermography frames (Figures 7 and 8).
Primarily, the tracking algorithm can be divided into

five main stages, as illustrated in Figure 8: IR therm-
ography acquisition, ROI geometry profile definition,
object coordinate tracking, information extraction,
and sensor display. The manner in which the active
ROI moves through the image frames is illustrated in
Figure 9, where the yellow rectangle moves with the
relative motion of the baby inside the camera’s field
of view (FOV).
When template matching, the ring projection template

(RPT) process was used to address rotational variations
within the thermography-imaging scene. The RPT reduces
a 2D thermogram image into a 1D vector. In general, this
task is used as a pre-processing step in the VIRSENS
approach.
We define the initial template to be T(x,y) of size (M ×N).

The RPT process begins by deriving a center point on the
Template T(x,y) that is denoted as (xc,yc). Subsequently, the
e LabVIEW platform for the virtual thermal sensor.



Figure 7 (Left): Successive thermography frame-by-frame definition and tracking of selected ROIs from the different body parts of a
neonate, (Right): Simplified flow diagram for tracking method in the virtual sensor.
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Cartesian frame coordinate Template T(x,y) is trans-
formed into polar frame coordinates based on the fol-
lowing relations:
x = r cosθ (for horizontal reference) , y = r sinθ (for vertical

reference)
where

r ¼ intð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xcð Þ2− y−ycð Þ2

q� �
; r∈ 0;R½ �;R ¼ min M;Nð Þ ð1Þ
Figure 8 Fundamental steps of the ROI tracking algorithm for NIRT v
acquisition down to the surface temperature presentation.
Basically, the ring projection in the selected template
T(x,y) at radius r is denoted as PT(r) and is defined as
follows:

PT rð Þ ¼ 1
Sr

X
k
T r cosθk ; r sinθkð Þ; ð2Þ

where Sr is the total number of pixels falling on the cir-
cle of radius r = 0,1,2,…,R and k denotes the number of
correlation iterations in template matching kernel. Note
irtual thermal sensing, illustrating processing flow from thermal



Figure 9 Two successive ROI tracking images used in the virtual sensing technique, were the ROI profile moves due to the neonate’s
body movements along relative coordinates.
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that PT(r) is defined as the mean pixel intensity along a
circle whose radius to the center of the template has
equal order in the correlation computation.
Because the RPT is synthesized along circular rings of in-

creasing radii, the derived 1D RPT on the thermography
image is invariant to the rotation of its corresponding 2D
image template. To effectively obtain the RPT computation
along concentric circles, the method employs a look-up
table (LUT) whose diameter is set to the size of the tem-
plate in the ring projection process.
Finally, the RPT is obtained simply by summing up the

pixel values along a concentric circle within the template
results. For the matching process, the normalized cor-
relation (NC) is adopted in the similarity measurement.
Therefore, we consider the following:

P
→

T ¼
Δ

PT 0ð Þ;PT 1ð Þ;…; PT Rð Þ½ � ð3Þ
and

P
→

S ¼
Δ

PS 0ð Þ;PS 1ð Þ;…; PS Rð Þ½ � ð4Þ

Generally, the representations of the reference template

ring-projection vectors (P
→

T ) and thermography scene sub-

image (P
→

S ) are computed consecutively. The normalization
correction (NC) process between the ring projection vec-

tors P
→

T and P
→

S , denoted by P
→

T ; P
→

S

D E
, is defined as
P
→

T ; P
→

S

D E
¼

Rþ 1ð Þ
XR
r¼0

PT rð ÞPS rð Þ−
XR
r¼0

PT ð
 

Rþ 1ð Þ
XR
r¼0

PT rð Þ2−
XR
r¼0

PT rð Þ
�

2

 !
Rþð

  
With this definition, the value is unaffected by ro-
tational and linear changes (at constant gain and
contrast offset in the thermal imaging) in the refer-
ence template and thermography scene subimage. In
addition, the dimensional length of the ring pro-
jection vector is only (R + 1). This significantly in-
creases the computational efficiency for the vector

P
→

T ; P
→

S

D E
:

Parametric vector approach for template matching
The method proposed here is inspired by the PT
method, which is characterized by a decrease in
computational complexity when the thermography
image involves a change of scale and rotation. There-
fore, it is considered a robust solution for the large-
scale image data generated in medical thermography
[26,29,30]. To obtain rotation/scale invariance in the
matching process, a simple approach using a PT vec-
tor (template image) and a PS vector (scene sub-
image) was proposed.

In the VIRSENSE approach, a PT vector P
→

TP was

constructed from a base-ring projection set (P
→

t0 ;

P
→

t1 ;…; P
→

tN ) consisting of the RPTs and including the
rÞ
XR
r¼0

PS rð Þ
!2

� 100

1Þ
XR
r¼0

PS rð Þ2−
XR
r¼0

PS rð Þ
�

2

 ! ð5Þ



Abbas and Leonhardt BMC Medical Imaging 2014, 14:9 Page 8 of 13
http://www.biomedcentral.com/1471-2342/14/9
template image and differently scaled images as
follows:

P
→

TP ¼
Δ P

→

t0ω0 þ P
→

t1
ω1 þ…þ P

→

tN
ωN

P
→

t0ω0 þ P
→

t1ω1 þ…þ P
→

tNωN

��� ���; 0:0≤ωi ≤ 1:0;
XN
i¼0

ωi ¼ 1:

ð6Þ

The NC between the scene subimage vector P
→

S and a

PT vector P
→

TP becomes P
→

T ; P
→

S

D E
; then, the problem under

consideration can be solved by constrained optimization,
that is,

max
ω
→
� � P

→

T ; P
→

S

D E
; subject to

XN
i¼0

ωi ¼ 1: ð7Þ

Essentially, the Lagrangian multiplier (LM) method can
solve this problem of difference optimization. The solu-

tion of ω→ is given by

ω
→¼ L−1 F

→

n→ •L−1 F
→� 	 ; ð8Þ

where

ω
→ ¼

Δ ω0

⋮
ωN

2
4

3
5; L ¼

Δ
P
→

t0 ; P
→

t0

D E
… P

→

t0 ; P
→

tN

D E
⋮ ⋱ ⋮

P
→

tN ; P
→

t0

D E
⋯ P

→

tN ; P
→

tN

D E
2
664

3
775;

F
→¼

P
→

S; P
→

t0

D E
⋮

P
→

S; P
→

tN

D E
2
664

3
775and n→ ¼

Δ 1
⋮
1

2
4
3
5

The next step of the algorithm is producing the scaling
value sq estimation of the scene subimage, which initi-
ates in terms of the following equation

sq ¼
XN
i¼0

ωisi; ð9Þ

where si for 0 ≤ i ≤N denotes the different scaling values
generated by scaling the template image. The approach
enables fast matching in the ROI tracking algorithm.
The computational efficiency is significantly increased
because the RPT process reduces a 2D thermography
image array into a 1D vector. Additionally, the correl-
ation matrix (L) can be determined in the training phase
while the optimal parameters ω

→
, the scaling value obtained

directly from the correlation vector F
→
, and the correlation

matrix L are determined in the matching phase [30]. In
fact, there is no iteration step involved in this tracking
template-matching-based algorithm. Therefore, the com-
putational time is considerably reduced.
Generally, this data description is appended to the in-
put template image. During the matching phase, the
template descriptor (the ROI descriptor, PROI (xT , yT)) is
extracted from the template image and used to search
the template in the inspection image [31-33].
The mathematical process of image cross-correlation

is simple; the RPT is overlaid on the source thermogram
image, and the intensity values for each corresponding
pixel are multiplied individually. Additionally, all of the
matched templates are summed to produce a single cor-
relation value [32,33].
The correlation value matrix is then scanned for its

peak value. This position generally conforms to the pos-
ition in the source image that most closely matches the
template [22,34,35]:

P
→

T≡ PT 0ð Þ; PT 1ð Þ;…;PT Rð Þ½ �T :P x; yð Þ ð10Þ

where P(x,y) is the reference template position on the
thermography image. The correlation matrix can include
several high values that correspond to several instances
(events) of tracked templates in the source thermog-
raphy image [36-38].

Scale (shift)-and rotation-invariant technique
One of the greatest flaws in cross-correlation is its in-
ability to match objects in a source image that are either
a different size or rotated compared to the reference
template. These two template-matching mechanisms are
used in the ROI descriptor tracking (corresponding to
the projected template) in the frame matrix. The math-
ematical approximation of such a template inside a rect-
angular contour with Tk(xk,yk) is as follows:

PT uð Þ ¼ 1
Sk

X
k
T xk ; yk

 �

; ð11Þ

To overcome and compensate for this issue throughout
the NIRT data frames, the template must be rescanned
over the thermography scene image using different rota-
tions and sizes (variances in both the x- and y-axes). This
process can be extremely time consuming; consider per-
forming a cross-correlation 360 times just to perform a
rotation-invariant match without even sub-degree preci-
sion [35,39,40].
If the tracked portion always has the similar size and

no spatial distortion exists, then the virtual sensor does
not scan for size variations [4,26,27,41]. The identical
principle is applicable for rotation variance if the body
part will be repeatedly positioned at the same orientation
(Figure 10). In that case, the source thermography image
is rescanned using a range of different angles (cross-
correlation can typically detect object rotations of ap-
proximately ±5° without rescanning) is not necessary.



Figure 10 Imaging-plane layout of ROI tracking over a neonate’s different body regions displaying the out-of-plane rotation coordinates
that were used to develop an ROI tracking algorithm for medical IRT.
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The detection of object rotations can be accomplished
at up to ±12°-18° angle of rotation without rescanning
and initializing the reference ROI template. However,
the inability of cross-correlation to match objects in a
source image that are either a different size or rotated
compared to the template is still one of the shortcom-
ings in the rotation-and shift (scale)-invariant method
for the object detection system [26,30,42-44].

Results and discussion
In summary, the results obtained from the virtual sensor
demonstrate its ability to accurately track different geo-
metric profiles over the external anatomy of a neonate.
Only a small percentage of the motion detection trials
failed to track due to the lack of a properly matching
matrix for the ROI descriptor under study (see Table 1).
The main clinical application of the presented virtual

sensor approach is the continuous monitoring of pa-
tients without loss of the ROI due to unexpected move-
ments or involuntary motions initiated by the patient.
Table 1 Comparison of scoring rate success for VIRSENS in NI

Frame no. Success rate (%) Data-over flow time (ms) T

1 82 1,200 Fa

2 74 1,403 Fa

3 80 1,227 Fa

4 79 1,296 Fa

5 85 1,372 Fa

6 86 1,214 Fa

7 87.2 1,306 Fa

8 82 1,278 Fa

9 89.02 1,282 Fa

10 88.5 1,307 Fa

The table also illustrates the correlation of the tracked ROI descriptor over the mea
1The table presents the comparison of different success rates for the virtual temper
percentage of fitted and tracked ROI over the misallocated ones.
The VIRSENS approach offers the flexibility to perform
stress-test infrared thermography, e.g., on treadmills, or
to monitor unconscious patients (e.g., under intensive or
critical care). Furthermore, this non-contact temperature
monitor may become a tool in high-risk missions, such
as for pilots or submarine staff [9,12,45], to provide online
monitoring of respiration activity through convective heat-
loss during expiration and inspiration [7,20,41,46].
To further advance the use of VIRSENS in neonatal

medicine, we used embedded contactless temperature
monitoring and regulation in a neonatal incubator closed-
loop control system. This approach can reduce the need
for skin temperature electrodes and the problems associ-
ated with their use, such as sensor dislocation, motion ar-
tifacts, calibration drift, wire crowding, false connections,
and the possibility of infection for newborn infants.
Moreover, this tracking method requires additional

validation tests and clinical trials to provide beside the
proof-of-concept (POC) of this technology feasibility in
the neonatal monitoring field.
RT imaging1

racked anatomical region p = error rate Correlation coeff.

ce-hand/belly 0.0037 0.235

ce-hand/belly 0.0022 0.171

ce-hand 0.0015 0.217

ce-hand/belly 0.0023 0.182

ce-hand 0.0012 0.302

ce-hand/belly 0.0031 0.319

ce/hand 0.0024 0.479

ce/hand/belly 0.0027 0.466

ce-hand/belly 0.0018 0.502

ce/hand 0.0023 0.412

surement scene with respect to a newly chosen position of the ROI descriptor.
ature sensor used within the NIRT imaging for illustrating the scoring
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In addition, the ability of VIRSENS to perform geomet-
ric identification of selected body parts (e.g., face, hands,
legs, interscapular, and maxillary region) (see Additional
files 1, 2 and 3) adds a crucial role in anatomical posture
identification for neurological reflexes and postural con-
trol of neonates. Because the VIRSENS has several misal-
located ROI over the neonate’s geometry during the
tracking process (Figure 11), which indicates that this
method need further optimization and feasibility studies.
This believed to be solved when more stable and precise
tracking algorithms used in the VIRSENS architecture to
become more stable monitoring technique.
Table 2 provides some of quantitative analysis for per-

formance measuring in different thermography datasets
within NIRT study. This table showing the scoring of
matches of tracked ROI per anatomical regions for seven
infants participating in the study. As we can see from
Table 2 that the higher success rate of this scoring occurs,
in the facial, plane where there is a prominent landmark
such as nose, orbital, forehead and maxillofacial regions.
Therefore, this is highly discriminated from other anatomy
such as hand, arms, legs and trunk can be use the facial
tracking as referential template for tracking accuracy and
validation procedure of virtual thermal sensor.

Conclusion
In this study, a thermal imaging tracking method was pro-
posed and tested based on a template-matching algorithm.
The developed method uses a spatially trained ROI tracker
whose interactions are modeled using cross-correlations of
the ROI template and a searchable IR image. The method’s
output provides pixel-level tracking accuracy even in the
Figure 11 Setting of erroneous ROI tracking over neonate's body reg
changing its position as illustrated in sub-figure (b) through sub-figu
presence of multidimensional target transformation. The
proposed tracking method was effectively tested in thermal
and visual datasets featuring facial regions and other ana-
tomical objects.
The thermography tracking system for neonatal moni-

toring was implemented and tested for clinical monitor-
ing inside NICU unit. The main conclusion from this
experiment is that the tracking can be robust over well-
calibrated thermography frames and for lesser jerky
movements of the neonate. In fact, thermography mea-
surements performed at a distance are beneficial from a
psychological viewpoint for both staff and the patient’s
relatives but produce challenges from the medical per-
spective. The tracking problem, which is pivotal in this
study, was particularly challenging due to the functional
nature of thermal IR imaging and its application in real-
time operation.
Moreover, NIRT imaging depicts physiological changes;

therefore, it is highly dynamic, non-linear, unpredictable
in its uncertainties, and difficult to model. In addition, the
estimation of the emissivity value at certain tracking
points requires further optimization and development
before it can be included in prospective NIRT applica-
tions, such as the detection of respiration signatures
with the IRTR method or evaluation of superficial blood
perfusion over active metabolic regions (e.g., liver and
brain). Because these applications would appear to be
difficult tasks due to the slow hemodynamic activities
of the superficial vessels, the method requires further
development and improvement for clinical conven-
tion in contactless blood perfusion and hemodynamics
parameters.
ions, displaying the desired ROI position set in sub-figure (a) and
re (d) by misallocation of the coordinate in the tracking software.



Table 2 Comparison of different desired ROI locations of virtual temperature sensor2

NIRT datasets/infant Tracked regions Total desired ROI/region Desired ROI
(fitting and tracked)

False ROI
(misallocated)

Scoring percentage %

Infant 1 Facial 4 3 1 75

Abdominal 6 4 2 66.6

Upper limb 4 3 1 60

Lower limb 5 5 0 100

Infant 2
(radiant warmer)

Facial 4 2 2 50

Abdominal 6 4 2 66.6

Upper limb 5 4 1 75

Lower limb 5 4 1 75

Infant 3
(radiant warmer)

Facial 4 4 0 100

Abdominal 6 5 1 83.3

Upper limb 5 5 0 100

Lower limb 5 4 1 80

Infant 4
(radiant warmer)

Facial 4 3 1 75

Abdominal 6 5 1 83.3

Upper limb 5 4 1 80

Lower limb 5 3 2 60

Infant 5 Facial 4 3 1 75

Abdominal 6 4 2 66.6

Upper limb 5 3 2 60

Lower limb 5 4 1 80

Infant 6 Facial 4 4 0 100

Abdominal 5 5 0 83.3

Upper limb 5 3 2 60

Lower limb 5 3 2 60

Infant 7 Facial 4 2 2 50

Abdominal 6 3 3 50

Upper limb 5 4 1 80

Lower limb 5 3 2 60
2This table gives the quantitative index for the total numbers of fitted ROIs and missed ROIs over the total number of these selected ROIs for different spatial
positions over neonate’s body.
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Furthermore, this physiological tracking application
based on thermography might consider a good candidate
for running on smartphones and other mobile commu-
nication devices. These applications can be a part of the
widespread adoption and use of mobile and computing
vision technologies is opening new and innovative ways
to improve health care delivery. This in turn can trans-
form a mobile platform into a regulated medical moni-
toring system.
Statement of consent
An oral consent was gained from the parents of the pa-
tent for publication of optical and thermography images
and their related files according to medical ethics ap-
proval from Medical Ethics committee of the RWTH
Aachen University Hospital, issued on 19 August 2009
(EK032/09).
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Additional file 1: Thermography video file for virtual temperature
sensor (VIRSENS) used in NIRT imaging application (respiratory
monitoring) for a neonate one cared in open radiant warmer.

Additional file 2: Thermography video file for virtual temperature
sensor (VIRSENS) used in NIRT imaging application (respiratory
monitoring) for a neonate two cared in open radiant warmer.

Additional file 3: Thermography video file for virtual temperature
sensor (VIRSENS) used in NIRT imaging application (respiratory
monitoring) for a neonate three cared in open radiant warmer.
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