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Abstract

Background: Radiofrequency ablation (RFA) is one of the most promising non-surgical treatments for hepatic
tumors. The assessment of the therapeutic efficacy of RFA is usually obtained by visual comparison of pre- and
post-treatment CT images, but no numerical quantification is performed.

Methods: In this work, a novel method aiming at providing a more objective tool for the evaluation of RFA
coverage is described. Image registration and segmentation techniques were applied to enable the visualization of
the tumor and the corresponding post-RFA necrosis in the same framework. In addition, a set of numerical indexes
describing tumor/necrosis overlap and their mutual position were computed.

Results: After validation of segmentation step, the method was applied on a dataset composed by 10 tumors,
suspected not to be completed treated. Numerical indexes showed that only two tumors were totally treated and
the percentage of a residual tumor was in the range of 5.12%-35.92%.

Conclusions: This work represents a first attempt to obtain a quantitative tool aimed to assess the accuracy of RFA
treatment. The possibility to visualize the tumor and the correspondent post-RFA necrosis in the same framework
and the definition of some synthetic numerical indexes could help clinicians in ameliorating RFA treatment.
Background
Image-guided radiofrequency ablation is a powerful locore-
gional technique for the treatment of the non resectable
primary and metastatic hepatic malignancies and a curative
alternative to surgery in circumscribded tumors (inferior
to 3 cm in diameter) [1]. Total necrotization of the target-
tumor is the crucial condition of an effective treatment.
However, there are many factors that could lead to an
incomplete tumor ablation, such as insufficient visibility of
tumor on US images, heat propagation prevented by blood
vessels, and dimensions and morphology of the target
tumor [2,3]. Therefore, it would be fundamental to assess
the overlap between the tumor and the RFA necrotized tis-
sues after the treatment. In current clinical procedures, the
two major indicators of tumor necrotization and treatment
efficacy are parenchyma changes seen on post-treatment
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CT and MR images and tumor recurrence in the patient’s
follow-up. However, some subjectivity and uncertainty
affect medical judgment about tumor coverage. The obsta-
cles are: i) small contrast between necrosis and residual
tumor, ii) inflammation process due to coagulative effects,
iii) possible blood effusions [4].
Objective of this paper was to describe a method for

quantitative assessment of RFA tumor coverage. To this
purpose, we introduced a set of numerical indexes mea-
suring overlap between tumor and RFA induced necrosis
and their reciprocal position after realignment and seg-
mentation of pre- and post-RFA CT images. In this work,
segmentation of regions of interests (ROIs) was performed
through a Fuzzy-C-means approach [5,6], while spatial
correspondence between ROIs was obtained by realigning
images through a non-linear B-splines-based algorithm
[7,8] able to compensate for liver deformations.
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Figure 1 Peripheral necrosis on the liver edge, showing very
low contrast with respect to the intercostal tissues (left) and
correspondent liver binary mask obtained by Live-Wire
technique (right).

Passera et al. BMC Medical Imaging 2013, 13:3 Page 2 of 10
http://www.biomedcentral.com/1471-2342/13/3
Methods
Protocol
The method was tested in an experimental protocol deve-
loped at the Department of Images for Diagnosis and
Therapy of the Fondazione IRCCS Istituto Nazionale dei
Tumori (Milan, Italy) during 2007. 5 metastases and 5
hepatocellular carcinomas (HCCs) smaller than 20 cm3

(1-4 cm, tumor diameter range) were selected from 10
patients (5 men, 5 women; age range 40-86 years) treated
with RFA as they were very complex cases not suitable for
surgery. These tumors were selected among those sus-
pected not to be completely treated. This was done in
order to better evidence the potentiality of the proposed
method.
All patients underwent intravenous multiphase dynamic

CT before and after RFA. Pre-RFA CT scans were per-
formed 5-10 days before RFA, while post-RFA scans were
performed 15-20 days after the treatment.

Intravenous multiphase dynamic CT protocol
In this study, a Siemens SOMATOM Sensation 16 CT
scanner (Erlangen, Germany) was used (gantry rotation
speed of 420 ms, generator of 60 KW, pitch 1-1.5, 120 kVp,
250-300 mAs). 120–140 ml of nonionic Iopamiron 370
contrast agent were injected at a rate of 3 ml/s. Delay times
after injection were 45, 80, and 180 seconds for the arterial,
hepatic venous, and equilibrium phases, respectively. For
HCC and hypervascular metastases arterial phase was con-
sidered, for hypovascular metastases portal or equilibrium
phases were evaluated.
All CT scans were performed on inspiration. CT images

were reconstructed on a 512x512 grid with a slice thick-
ness of 5 mm and a pixel size of 0.74 mm (increment
0.6 mm, reconstruction 1-5 mm, medium smooth kernel
(i30F), window/level 300/40).

RFA protocol
Depending on device availability, operator preference and
tumor location, RFA was performed using a hook-tip nee-
dle housing 4 or 7 retractable curve electrodes (RITA
Medical System, Mountain View, CA) or a 19 gauge
MIRAS RC electrode (INVATEC, Brescia, Italia). The elec-
trode was connected to a 460-KHz RF generator (Model
500 L; RITA Medical System, Mountain View, CA), which
supplied a maximum power output of 110 W. In both
cases, RFA was performed with real-time US guidance
using a 3.5 MHz convex-probe (HDI 5000, ATL Ultra-
sound, Bathell, WA) and a guide device incorporated into
the US probe in case of percutaneous puncture or during
intraoperative approach. For all patients, the duration of
RF energy application was in the range of 12-20 min. For
HCC nodules, RFA procedure was performed after the
interruption of their arterial supply by the occlusion of the
hepatic artery with a balloon (diameter 11.5, length 2 cm)
at the tip of a 7.0-F catheter (Medi-tech/Boston Scientific,
Watertown, Mass). The occlusion balloon in the hepatic
artery was filled with a mixture of saline solution and con-
trast materials.
RFA was performed by experienced physicians (70 RFA

treatments per year).

Image processing
In this work, the tumor coverage of RFA treatment was
assessed by the integration between pre- and post-RFA
CT images. Image processing was divided into three
steps: (i) pre-processing (ii) segmentation and (iii)
registration.

Pre-processing
To improve image quality and segmentation/registration
performances the following pre-processing steps were
applied:

� image noise reduction. CT image quality is often
degraded by artifacts resulting from excessive X-ray
quantum noise. In order to reduce image granularity
and then to improve ROIs extraction, the original CT
images were pre-filtered by a 5 × 5 median filter [9].

� liver volume pre-segmentation. Segmentation of
tumors and necrosis on the liver edge was difficult
because their typical gray levels were close to the
intercostal tissues ones. In order to overcome this
problem, a binary mask of the liver clearly
separating liver from thorax pixels, was obtained
[10,11] (Figure 1). To segment the liver region we
used the Live–Wire algorithm [11] implemented in
the MevisLab [12] software. Next, subsequent
processing was applied to liver pixels only.

� image contrast enhancement. In order to obtain a
sharp distinction among different clusters
composing liver images, remapping of image
dynamic range was applied. As liver intensity
distribution is similar to the Gaussian distribution, it



Figure 3 Examples of reference pixels on metastasis (a), HCC
(b), uniform necrosis (c), and irregular necrosis with a
hyperdense area due to some coagulative effects (d).
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is possible to define the characteristic liver range
analyzing the histogram of liver intensity into the
volume pre-segmented by the Live–Wire technique.
The lower and the higher gray levels that bounds
the liver range were identified by two thresholds
corresponding to the 2-3% of the liver histogram
peak [13]. The defined liver range was then spread
on the whole image dynamic range.

Segmentation
Figure 2 shows the main steps of our segmentation
approach. The implemented algorithm is semi-automatic
and gets as input the liver edge outlined by Live–Wire
technique and a few reference pixels placed on tumor/
necrosis by an operator through a graphical interface.
Up to 3 pixels per region, representative of tumor/necro-
sis intensity may be selected among the darkest metasta-
sis and uniform necrosis, or the brightest HCCs and
hyperdense areas of irregular necrosis (Figure 3). Liver
clustering was performed through a Fuzzy C-Means
(FCM) algorithm [5,6] in order to cope with low con-
trast, intensity inhomogeneity and lack of clear edges
that characterized both hepatic tumors and post-ablation
necrosis [14,15]. After tuning of the method, the number
of cluster was set at 7. Clusters were labeled according
to their crescent centroid intensity (1 was the darkest, 7
the brightest). Once the image was segmented, we had
to assign clusters to either tumors or necrosis. Since
tumors and RFA necrosis showed different intensity
patterns, the subsequent ROI extraction procedure was
split into two different paths:

� tumor. Reference pixels were foremost used to
define the range of tumor cluster indexes. Actually,
the kind of tumors considered in this study
(metastasis and small HCCs) was characterized by
some geometric regularity. Tumors looked rather
Figure 2 Steps of the segmentation algorithm ( * user interaction).
compact in the center, while they usually tended to
vanish at the periphery. This means that, in the
clusterized image, the tumor had a concentric ring
structure. The mean of cluster indexes of reference
pixels on all slices were used to identify the type of
tumor: if it was inferior to 3.5 was a metastasis,
while if superior, a HCC. Therefore, pixels were
classified with increasing (for metastasis) or
decreasing (for HCCs) cluster indexes from the
center to the periphery of the tumor (Figure 4).

� necrosis. The implemented algorithm differentiated
if the necrosis was uniformly hypodense or showed
hyperdense areas due to some coagulative effects. In
the clusterized image, uniformly hypodense necrosis



Figure 4 Examples of hepatic tumor partitioned in clusters:
metastasis with a cluster index ranging from 1 to 4 (left) and
small HCC with a cluster index ranging from 7 to 6 (right).

Figure 5 An example of pre-RFA image with metastasis (a) and
with synthetic pattern replacement of the metastasis (b).
Correspondent post-RFA image with necrosis (c) and with synthetic
pattern replacement of the necrosis (d).
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were characterized by pixels belonging to the first
two clusters corresponding to the darkest gray
levels. These pixels were easily detected using the
neighborhood conditions on the reference pixels
picked by the operator. Instead, necrosis with
hyperdense areas were identifiable by the presence
of reference pixels with a cluster index greater than
two. In the latter case, reference pixels were used to
detect all hyperdense pixels and to further classify
them iteratively with lower indexes. This
classification allowed to treat irregular necrosis
detection in the same way as uniform necrosis.

ROI extraction was particularly challenging for HCCs
located very close to arterial vessels and for metastasis and
necrosis on the liver edge. In these particular cases, mor-
phological operators were used in order to distinguish real
ROIs from those artificially extended due to partial vol-
ume effects at the liver periphery or to contrast enhanced
opacified vessels.
The segmentation method was quite fast, taking about

ten minutes considering user interaction in the live-wire
technique and pixels picking.

Registration
Pre- and post-RFA images were registered through a
B-spline free-form deformation algorithm [7,8], using the
normalized mutual information (NMI) as similarity mea-
sure. Liver shifts and deformations were modeled by an
affine global transformation and a local transformation
based on a free-form deformation model of a regularly
spaced control points grid. This registration technique
had several advantages: it worked in the 3D space; it was
efficient and robust, as the employed similarity measure
(NMI) was not influenced by intensity changes in the pro-
cessed images.
However, an undesired compensation between tumor

and necrosis might occur when performing pre- and post-
RFA image registration, especially in the case of metastasis
with gray levels very close to necrosis. In this situation,
the registration method tended to overlap tumor and nec-
rosis edges by modeling fictitious deformations. This ef-
fect was overcome by replacing, before image registration,
the tumor ROI (in pre-RFA image) and the necrosis ROI
(in post-RFA image) with a synthetic pattern (Figure 5),
made out of a 19 × 19 pixels extracted from uniform liver
parenchyma and replicated by radial padding. This new
pair of images was then non–linearly registered and the
output transformation was applied to the original images
(Figure 6). The replacement of the original ROI with a
synthetic pattern allowed to compensate for liver deforma-
tions, even if marked local deformations that might occur
due to the coagulative process might not be corrected.
Registration step (fully automatic) took about 40 minutes.

This time was evaluated on a PC (Intel Pentium III). The
use of a more powerful or dedicated PC could improve
this performance.

Numerical Indexes for the RFA evaluation
After having extracted and registered the pre-RFA tumor
and the post-RFA necrosis, it was possible to measure
their overlap and mutual position. As shown in Figure 7
there were two possible situations: a totally treated
tumor or a not-totally treated tumor. To describe these
situation four numerical indexes were defined:

(i) The residual tumor size. All pixels belonging to the
pre-RFA tumor and not included into necrosis area
were labeled as not treated pixels. Then, the
residual tumor size (given by the number of non



Figure 6 The post-RFA image non-linearly registered without
using synthetic pattern replacement (a) and using synthetic
pattern (b). The arrows show the effect of the fictitious
deformations compensation.
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treated pixels) was computed in volume and in
percentage with respect to the pre-RFA tumor size.

(ii) The tumor free margin (T.F.M.). In the case of
totally-treated tumor, it was possible to calculate
the minimum T.F.M. by dilating pre-RFA tumor
edge in a isotropic way until the tumor remains
into the necrosis. The product between number of
dilating iterations and pixel dimension gave the
desired thickness. As the probability of tumor
recidivism was higher for limited extra-tumor
necrosis thickness [4], this index might have clinical
relevance to indicate possible pathway for
recidivism.

(iii)The inter-barycentric distance (|BT – BN |). This
index computed the distance between tumor and
necrosis barycenter (BT and BN , respectively)
providing a measure of ROIs centering.

(iv) The orientation index (O.I.). For each slice, an
ellipse was fitted to each ROI by making equal
second order central moments of the ellipse to
those of ROIs. Then, the angle (in degrees) between
Figure 7 Numerical indexes used for RFA evaluation.
the major axis of the two ellipses was measured.
This angle gave indication of the reciprocal
orientation between tumor and necrosis ROIs and
of potential favorite orientations for necrosis
growth.

The inter-barycentric distance and the O.I. provided
complementary elements for a more objective RFA evalu-
ation. In fact, a not–totally treated tumor also resulted in
a misalignment with the post-ablation necrosis. In particu-
lar, an inter-barycentric distance |BT − BN | with the same
magnitude order of the target tumor was the natural con-
sequence of an inaccurate tumor centering by the necro-
sis. Besides, an O.I. in the critical range 60° − 120°
indicated an objective difficulty of the necrosis in follo-
wing the tumor morphology and orientation.

Segmentation validation
As segmentation was crucial in the proposed method, a
detailed validation of this step was performed, following a
classical approach reported in literature [16,17]. An
experienced radiologist manually traced the contour of 10
tumors and 10 necrosis in our datasets. Manual contours
were considered as Ground Truth (GT) and compared
with the output ROIs obtained with the semi-automatic
algorithm.
Pixels belonging to the ROI detected by the semi-

automatic algorithm were classified as true positives (TP),
false positives (FP), true negatives (TN) and false negatives
(FN) on the basis of the comparison with the GT. Such as-
sessment made possible the evaluation of the following in-
dexes: Percentage Match (PM), Positive Predictivity (P+),
Specificity (SPEC) and Negative Predictivity (P-) [18](see
Table 1). PM index shows the correspondence between
GT and algorithm segmentation. An ideal PM value was
100%, meaning that algorithm perfectly localized tumor/
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necrosis pixels. Conversely, the P+ index estimated the
correspondence in size and location between the algo-
rithm segmentation and GT. PM index did not take the
potential error by excess into account; on the contrary P+
had low values if FP number was high because of an error
by excess. A good segmentation thus required high values
for both PM and P+.

Results
The proposed method was applied to 8 out of 10 avail-
able cases as for 2 patients it was not possible to obtain
a satisfactory realignment due to contingent image fea-
tures: in the first case, serous fluid effusion in the
abdominal cavity (ascites) caused the presence of a
hypodense strip in the post–RFA image only; in the
second one, the patient underwent not only RFA-
treatment but also hepatic resection. In both cases the
registration algorithm was not able to correct differences
between pre- and post-RFA images. Such cases were
thus used for the segmentation validation only. In the
remaining 8 cases (4 HCCs and 4 metastasis), the
complete RFA assessment procedure was performed.

Segmentation validation
Figure 8(left) shows trade-off PM vs. P+. PM and P+
mean values are very close to the optimum point on the
top-right (PM > 90% and P + > 94%) and, in addition, the
necrosis PM mean value is lower than the tumors one.
This is a consequence of an important difference be-
tween tumors and necrosis. Although they both had
vanishing edges, the segmentation algorithm had to
extract the whole area including vanishing parts only for
tumors; for necrosis, only the most compact area of the
ROI was extracted because the peripheral vanishing
parts were considered not perfectly treated and then
exposed to the tumor recidivism risk.
The implemented segmentation algorithm took these

considerations into account. In fact, for tumors the
whole cluster range was assessed starting from the ope-
rator reference pixels, while for necrosis only the first
two clusters (corresponding to the darkest and the most
compact ROI area) were extracted, limiting risk of error
by excess in necrosis segmentation procedure.
In order to assess the opposite risk of error by defect

SPEC and P- indexes were calculated. Figure 8(right)
Table 1 The numerical indexes used in the evaluation of
segmentation performance

Segmentation validation indexes [%]

Percentage Match TP
TPþFN :100

Positive Predictivity TP
TPþFP :100

Specificity TN
TPþFP :100

Negative Predictivity TN
TNþFN :100
shows that also the SPEC and P- mean values are very
close to the optimum point on the top-right angle
(SPEC > 96% and P− > 92%). This demonstrates a good
balance between errors by excess and by defect in the
segmentation process.
Assessment of RFA tumor coverage
The pre-RFA and post-RFA image registration and seg-
mentation operations enabled to visualize in the same
framework the overlap between the pre-RFA tumor and
the corresponding necrosis. In this way, information was
automatically integrated and it was not required a physi-
cian’s effort in finding anatomical markers for visually
locating the tumor after the RFA-treatment.
Figure 9 shows different ways of integrating informa-

tion, either by visualizing slice-by-slice tumor and necro-
sis edges on both pre-RFA (Figure 9(a)) and post-RFA
(Figure 9(b)) images or by distinguishing the treated
from the not-treated tumor area and comparing the
necrosis edge with respect to an ideal one (1 cm thick)
(Figure 9(c)). Finally, tumor and necrosis volume rende-
ring provided an easier understanding of the relationship
between the tumor and ablation zone in the 3D space
(Figure 9(d)), which would have been hard to analyze by
a simple visual inspection due to the presence, on the
post-RFA image, of some hypovascularised areas close
to the original metastasis. In addition, the proposed
method provided a set of numerical indexes able to
quantify the overlap between pre-RFA tumor and post-
RFA necrosis ROIs. Table 2 reports results of the quanti-
tative analysis for the 4 metastasis and 4 HCCs (tumor
volume range, 1.5 – 19.4 cm3). The proposed method
classified only two tumors as totally treated, the percen-
tage of residual post-RFA tumor being in the range of
5.12%-35.92%. Indexes values were computed slice-by-
slice and results were summarized by using mean and
standard deviation or min-max range of values. In all
analyzed cases, T.F.M. was not homogeneous in all
directions. Maximum and minimum T.F.M., computed
for all tumors including those classified as not–totally
treated (minimum T.F.M. set to 0 in slices in which
tumor was not–totally treated), resulted to be always less
than 4 mm (except for Case4 in which maximum T.F.M
was 6.68 mm).
We show example of two opposite cases: a totally trea-

ted tumor (Figure 10(a), Case5) and the incomplete
tumor treatment (Figure 10(b), Case6). In the former
case, O.I. was about 65° and the T.F.M. < 2 mm, high-
lighting the necrosis difficulty in expanding along the
anterior-posterior direction; in the latter the null T.F.M.
confirmed the non-tumor coverage of the treatment des-
pite the good parallelism between tumor and necrosis
(O.I. ≃ 25°).



Figure 8 Mean and standard deviation of Percentage Match (PM) vs Positive Predictivity (P+) (left) and of Specificity (SPEC) vs
Negative Predictivity (P-) (right).
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Discussion and conclusion
In this paper, we presented a novel method to assess the
hepatic tumor coverage of RFA. In the following, some
comments about the method, the results and the study
limitations were reported.
Figure 9 Different way to visualize tumor and necrosis in RFA treatm
correspondent post-RFA image with enhanced tumor and necrosis ed
treated areas and the ideal necrosis edge (c), 3D render of a tumor a
Methodologies
A previous study [19] dealt with the problem of finding
an objective RFA assessment method based on CT
images segmentation and registration. There were three
main differences between that study and the method
ent: pre-RFA image with enhanced tumor and necrosis edges(a),
ges (b), pre-RFA image with enhanced tumor treated and not-
nd correspondent necrosis (d).



Table 2 The quantitative analysis of the tumor and post-ablation necrosis overlap for 8 cases

Tumor slices (#) Tumor volume (#) Residual tumor* (cm3)
[%]

T.F.M. (mm)
[min max]

|BT-BN| (mm)
[mean ± std]

O.I. (degree)
[mean ± std]

Case 1 META 5 6.90 0.58 [8.48%] 0 - 1.73 11.59 ± 1.52 57.46 ± 22.22

Case 2 META 8 19.38 0 [0%] 0.74 - 2.23 4.96 ± 3.54 33.59 ± 20.82

Case 3 META 4 4.53 0.77 [17.01%] 0 - 2.16 7.60 ± 0.45 74.72 ± 5.27

Case 4 META 7 14.48 1.42 [9.83%] 0 - 6.69 16.98 ± 3.38 56.60 ± 18.54

Case 5 HCC 5 3.88 0 [0%] 1.93 - 3.87 6.61 ± 1.52 63.94 ± 4.50

Case 6 HCC 3 2.20 1.41 [35.92%] 0 4.07 ± 0.17 25.31 ± 11.03

Case 7 HCC 7 16.4 0.84 [5.12%] 0 - 3.64 7.57 ± 3.30 19.04 ± 12.75

Case 8 HCC 2 1.53 0.11 [7.01%] 0 2.75 ± 2.41 31.33 ± 20.08

*The residual tumor volume after RFA treatment.
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proposed in this work. First of all, the method proposed in
[19] was designed for pre- and post-RFA images fusion in
order to enable easier understanding of the relationship
between the tumor and ablation zone and to help to judge
whether an ablative margin was ensured or not, but did
not provide any numeric index for quantitative analysis
and assessment of the RFA treatment. Secondly, in [19]
ROI segmentation was performed manually, while in this
work was based on a semi-automatic segmentation algo-
rithm, requiring user interaction only for the selection of a
few reference pixels needed to outline liver edges by the
Live–Wire technique. As compared with manual segmen-
tation, the algorithm used in this work was more efficient,
as it was based on the automatic pixels gray level analysis
performed through a Fuzzy-C-Means approach, it was
reproducible thus avoiding uncertainty and subjectivity of
manual edges outlining.
Finally, in our method, the pre- and post-RFA CT image

realignment was based on the B-splines free form defor-
mation algorithm [7,8] that allowed a non-linear hepatic
volumes registration, instead of a simpler rigid registration
algorithm with additional manual adjustments, which
compensated only for translation and rotation shifts that
Figure 10 A totally treated tumor (a) and a not-totally treated tumor
occurred between pre- and post-RFA acquisitions. As the
liver is a soft tissue undergoing non-linear deformations,
mainly caused by respiration, heart pulsations and adjacent
organ movements, a non-linear registration is required for
correct volumes realignment [20,21].
There were peculiar properties which made the proposed

algorithm particularly appealing for the assessment of RFA
treatment in liver tumors: the short interaction time
required by users to outline liver edges by the Live–Wire
technique and to acquire the reference pixels on the tumor
and necrosis ROIs (a few minutes for each image volume),
and the accuracy, proved by good results of segmentation
validation.

Results
Even if in this study the tumor coverage of RFA was
assessed on a small dataset of suspected non-completely
treated tumors, it is worth noting that most of the tumors
were not totally-treated (6 out of 8) and the percentage of
a residual tumor was in the range of 5.12%-35.92%. In
addition, T.F.M. was always well far from 1 cm-thick as
recommended in current RFA guidelines [4].
(b). Tumor and necrosis are visualized as in Figure 9 (c).
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There are several reasons that may explain these results.
Before the treatment, the surgeon might be often aware
that a large T.F.M. was not possible. In particular, the tar-
get tumor was frequently close to vital anatomical struc-
tures which had to be prevented from heat injury. Besides,
there were physical limitations to heat spread associated
to the liver blood flow (heat loss due to convection), that
were enhanced also by O.I. and inter-barycentric distance
indexes. Finally, the type of RFA treatment might affect
the heat spread, such as in the case of RFA-treatment exe-
cuted after occlusion of tumor blood supply. It was
demonstrated that a larger necrosis area can be created
when RFA treatment is performed in HCC nodules after
their arterial supply occlusion [22-24]. In fact, there is a
different temperature distribution within and around the
HCC nodule and this phenomenon seems related to the
difference in vascularization between HCC and the sur-
rounding cirrhotic hepatic tissue [23]. The latter has a
dual blood supply and is nourished mainly by the portal
vein, which provides about two-thirds of the blood flow.
HCC, however, is nourished mainly by the hepatic artery,
with the portal vein providing a minor blood supply and
the main venous drainage. Therefore acute occlusion of
arterial flow is soon followed by a decrease in pressure
within the HCC nodule, which continues to be perfused
by means of reversed portal flow and, in some cases, by
small collateral arteries.Thus, although the blood flow sup-
plying the HCC nodule is substantially impaired, changing
from high to sluggish flow, the blood flow supplying the
surrounding hepatic tissue is only marginally modified. This
results in an almost complete lack of heat loss due to con-
vection within the HCC nodule, whereas intact and perhaps
even increased portal blood flow in the surrounding tissue
acts as an efficient heat sink that prevents heat diffusion
outside the HCC nodule [23]. Therefore, the resultant
necrosis reproduces the shape of HCC nodules and
spare surrounding non-tumor tissues, producing a really
tiny T.F.M.

Study limitations
The present study had some limitations and some
improvements could be performed. First of all, a larger
data-set for the quantitative analysis of RFA-treatment
could allow an adequately statistical analysis of the
results. In addition, the evaluation of segmentation was
performed on the same image dataset, which had also
used to develop the segmentation algorithm. It is likely
that the performance will be slightly lower when larger
dataset of unseen data are considered. Secondly, the use
of isotropic and small voxels (slice thickness < 5 mm)
could improve the segmentation algorithm performance.
In this case, in fact, it could be possible to perform a 3D
segmentation and to include in the clustering approach
additional spatial information (by using, for example, the
hidden Markov random fields theory) [25,26]. Concer-
ning registration method, the use of a synthetic pattern
replacing tumor and necrosis ROIs, that prevents the
registration algorithm from modeling fictitious deform-
ation, had the drawback not to taking potential local
deformations due to the heat coagulative effects into
account. In a recent study [27], it was found that RF and
microwave ablation both cause significant contraction of
normal bovine liver and lung tissue ex vivo. Ablation-
induced contraction appears to be tissue type and ablation
modality specific. This phenomenon should be studied in
detail and modeled into the registration process.
Nevertheless, this work represents a first attempt to

obtain a quantitative tool aimed to assess the accuracy
of RFA treatment, and its major contribution is the def-
inition of several numerical indexes that could be helpful
to quantitatively describe RFA treatment, pointing out
potential limitations.
Finally, from a clinical point of view it would have been

also very interesting to follow up the cases with incomplete
tumor necrosis. Unfortunately we have a limited dataset
consisting of 10 tumors only (5 HCC and 5 metastasis)
almost heterogeneous in nature. For this purpose we are
planning a new study including a larger dataset grouped for
type of tumors. In this new study, we think to investigate
other valuable indexes such as the largest axial diameter of
tumor and necrosis and difference of the HU-units in order
to provide possible surrogates for the modified RECIST
criteria.
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