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Introduction
Alzheimer’s disease (AD) is the most common form of 
dementia, accounting for 50–75% of all patients with AD 
[1]. Cognitive impairment is the preliminary stage of AD, 
and mild cognitive impairment (MCI) is an intermediate 
state between normal aging and AD. Some patients can 
progress to AD if adequate treatment is not provided at 
the MCI stage. Therefore, early diagnosis and interven-
tion are crucial for MCI patients at high risk of progres-
sion to AD.

The advancement of neuroimaging techniques has 
facilitated the non-invasive identification of alterations 
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Abstract
Objective This study aimed to identify features of white matter network attributes based on diffusion tensor imaging 
(DTI) that might lead to progression from mild cognitive impairment (MCI) and construct a comprehensive model 
based on these features for predicting the population at high risk of progression to Alzheimer’s disease (AD) in MCI 
patients.

Methods This study enrolled 121 MCI patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Among 
them, 36 progressed to AD after four years of follow-up. A brain network was constructed for each patient based 
on white matter fiber tracts, and network attribute features were extracted. White matter network features were 
downscaled, and white matter markers were constructed using an integrated downscaling approach, followed by 
forming an integrated model with clinical features and performance evaluation.

Results APOE4 and ADAS scores were used as independent predictors and combined with white matter network 
markers to construct a comprehensive model. The diagnostic efficacy of the comprehensive model was 0.924 and 
0.919, sensitivity was 0.864 and 0.900, and specificity was 0.871 and 0.815 in the training and test groups, respectively. 
The Delong test showed significant differences (P < 0.05) in the diagnostic efficacy of the combined model and APOE4 
and ADAS scores, while there was no significant difference (P > 0.05) between the combined model and white matter 
network biomarkers.

Conclusions A comprehensive model constructed based on white matter network markers can identify MCI patients 
at high risk of progression to AD and provide an adjunct biomarker helpful in early AD detection.
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in specific brain regions that may underlie early mild 
cognitive impairment (MCI) [2]. Presently, magnetic 
resonance imaging (MRI) has emerged as the primary 
neuroimaging modality for assessing structural changes 
in the brain associated with distinct clinical manifesta-
tions observed in individuals with MCI and AD [3]. Since 
the cortex is generally considered the principal reposi-
tory of cognitive function, most previous MRI structural 
image studies on cognition have focused on the gray mat-
ter of the cortex [4]. However, available evidence suggests 
that white matter, an essential component of the subcor-
tex, is relevant to cognitive functions [5]. White matter 
mainly comprises glial cells and myelin sheaths, and its 
primary function is to transmit neural impulses and mes-
sages. In addition, white matter connects different brain 
regions through a series of fiber bundles. Advanced dif-
fusion magnetic resonance imaging (dMRI), which is cur-
rently the only in vivo non-invasive assessment of white 
matter fiber tracts, has become an important means of 
studying white matter structure and obtaining imaging 
biomarkers, whereas diffusion tensor imaging (DTI) fea-
tures such as fractional anisotropy (FA) and mean diffu-
sivity (MD) can quantify the white matter microstructure 
and are widely used in MCI or AD studies [6–8]. How-
ever, “cross-fibers” in white matter lead to uncertainty in 
the biological interpretation of these findings [9].

Recent advances in MRI techniques have enabled the 
investigation of network connectivity in patients with 
MCI. Functional magnetic resonance imaging (fMRI) has 
become a common tool to in vestigate functional con-
nectivity, which is a statistical measure of correlation 
between neuronal activities [10]. A growing number of 
studies have reported reduced functional connectivity 
in the default mode network (DMN), fronto-parietal net 
work, and thalamo-cortical network in patients with MCI 
[11–13]. At present, white matter (WM) network con-
nection has drawn increasing attention among studies of 
MCI. The “disconnection hypothesis” has been proposed, 
which postulates that WM microstructure lesions result 
in the inter ruption of communication between corti-
cal regions, thereby resulting in poorer cognitive per-
formance [14]. On the other hand, structural networks 
based on DTI have been widely employed in the field of 
neuroscience as a potential approach for investigating 
MCI. Previous studies have shown that the connectivity 
characteristics of brain networks based on white mat-
ter fiber bundles are closely related to cognitive function 
[15, 16], and DTI-based brain network connectivity has 
been demonstrated to possess predictive capabilities for 
prodromal AD patients [17]. Additionally, Savarraj et al 
reported that identified the ‘right anterior cingulum’ and 
‘right frontal superior medial’ as early predictors of AD 
within the biological network constructed using white 
matter tracts [18]. Based on the aforementioned research 

findings, we hypothesis that the topological metrics of 
WM structural networks in patients with MCI has the 
potential to identify the population at high risk of pro-
gression to AD.

The primary purpose of this study is to analyze the net-
work attribute features related to the progression of MCI 
disease from the white matter network and then combine 
these features with relevant clinical features to build an 
integrated model to predict high-risk MCI patients for 
progression to AD, which can become a crucial tool for 
early diagnosis and intervention of MCI.

Materials and methods
Demographic information
The case data included in this study were all from the 
public dataset available on the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) official website (https://adni.
loni.usc.edu/data-samples/access-data/#access_data), 
and ethical review information regarding ADNI data 
is available on the website. A total of 121 patients diag-
nosed with MCI at the baseline stage were included, 32 
of whom progressed to AD during the 4-years follow-
up period and were placed in the progression group. 
The inclusion criteria were as follows: all patients with 
an initial diagnosis of MCI were followed up for 4 years, 
underwent MRI examinations, and had complete clinical 
data. The exclusion criteria were as follows: (1) the origi-
nal MRI DICOM file was incorrect and we were unable 
to extract network features; and (2) biological indicator 
and scale evaluation data were missing. The cases were 
randomly divided into a training set (n = 84) and a test-
ing set (n = 37) in a 7:3 ratio. The training set was used to 
build the model, and the testing set was used to validate 
the performance of the model. In addition, this study also 
collected relevant demographic data, including age, gen-
der, and education level, and clinical data, including neu-
ral scale information such as MMSE (Mini-Mental State 
Examination), CDR (Clinical Dementia Rating), ADAS 
(Alzheimer’s Disease Assessment Scale), and APOE4, as 
complementary features for the model construction.

Data pre-processing and network attribute feature 
acquisition
All patients underwent DTI examination, which was per-
formed using a 3.0T MRI scanner (GE Company). The 
DTI images were first pre-processed and analyzed using 
FSL software, with steps including cranial stripping, eddy 
current correction, head motion correction, and adjust-
ment of diffusion gradient orientation. Before fiber track-
ing, poor-quality subjects were eliminated by a quality 
control program. Subsequently, the corrected images and 
reoriented b-value tables were imported into DSI Studio 
(http://dsi-studio.labsolver.org). The focused ion beam 
(FIB) reconstruction algorithm of q-space diffeomorphic 

https://adni.loni.usc.edu/data-samples/access-data/#access_data
https://adni.loni.usc.edu/data-samples/access-data/#access_data
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reconstruction (QSDR) was used to keep the tracked 
fibers in standard space. The deterministic fiber tracking 
algorithm and an enhanced tracking strategy were used 
to improve reproducibility. The parameter settings for 
fiber tracking included diffusion sampling length ratio 
of 1.25; fiber bundle angle threshold of 45 degrees; step 
size randomly chosen from 0.5 voxels to 1.5 voxels; filter-
ing fiber bundles with lengths less than 30 mm or more 
than 300 mm with seed points of 1,000,000 and tracking 
fiber travel in this way. Each patient got the respective 
DTI brain network, with each network corresponding to 
a 120 × 120 matrix. Finally, the AAL2 atlas was used as a 
template [19], with specific brain regions as nodes and 
inter-node connectivity index FA as edges, to construct 
the corresponding brain network and calculate the net-
work attribute values. Finally, 960 feature values were 
extracted to reflect the topological attribute changes of 
the DTI brain network. Detailed of feature and DTI scan 
information can be found in supplementary materials.

Feature dimensionality reduction and white matter 
network biomarkers construction
To exclude irreducible, redundant, and irrelevant features 
of the initial set from the extracted network attribute 
features, we used Max-Relevance and Min-Redundancy 
(mRMR) [20], Least absolute shrinkage and selection 
operator (LASSO) [21], and Gradient Boosting Decision 
Tree (GBDT) set dimensionality reduction methods for 

the extracted feature sets in the training set [22]. Then, 
the remaining features were used to construct white mat-
ter network biomarkers. Support vector machine (SVM) 
is the most commonly used machine learning algorithm 
and has been proven to predict the future diagnosis of 
AD. Therefore, we used the SVM algorithm to construct 
the white matter network biomarker [23]. The quanti-
tative values calculated for each case based on this bio-
marker reflected the probability of MCI progressing 
to AD. The area under the curve (AUC) of the receiver 
operating characteristics (ROC) curve was used to evalu-
ate the accuracy of the white matter network biomarkers 
in the training and test sets. The detailed steps of feature 
reduction and machine learning are described in the sup-
plementary material.

Construction and validation of the combined model
Since nonlinear models perform more robustly and can 
better utilize the information in the non-imaging data 
[24], the present study used logistic regression to con-
struct the combined model. A backward stepwise selec-
tion method based on the Akaike information criterion 
(AIC) stopping rule was used to select independent 
predictors from clinical features and white matter net-
work biomarkers in the training group, and the com-
bined model was built, as shown in Fig.  1. To validate 
the improvement in model performance after including 
white matter network markers, we used the area under 

Fig. 1 Combined model construction process diagram
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the receiver operating characteristic (ROC) curve (AUC) 
to evaluate the performance of different independent pre-
dictors, and the DeLong test was used to determine the 
difference between the combined model and other inde-
pendent predictors. In addition, we used the Hosmer-
Lemeshow test to analyze the fit of the combined model 
superiority and visualized it using calibration curves. 
Finally, the risk of progression to AD was calculated for 
each patient based on the model, after which the cases in 
the training and test groups were divided into low- and 
high-risk groups based on the cut-off values of the ROC 
curves, and the difference in the progression rate of MCI 
was examined using Kaplan-Meier survival curve analy-
sis for both groups.

Statistical analysis
Statistical analysis was conducted using R statistical 
software (version 3.6.3; http://www.Rproject.org), SPSS 
(version 24.0), and MedCalc (version 11.2). The t-test, 
Mann-Whitney U test, X2 test, or Fisher’s exact test were 
used to compare continuous and categorical variables. 
P < 0.05 was considered statistically significant.

Results
Comparison of clinical characteristics
There was no statistically significant difference in all 
clinical data information between the training and test 
groups (P > 0.05). There were significant differences in 
CDR and ADAS scores between the MCI stable group 
and the progression group in both the training and test 
groups (P < 0.05). In addition, there was a statistically sig-
nificant difference in MMSE scores between the stable 
and progression groups in the training group (P < 0.05), 
while there was no statistical difference in other clinical 
data (P > 0.05). See Table 1 for details.

Dimension reduction and biomarker construction of white 
matter network attribute features
After dimensionality reduction, five network attribute 
features were finally selected for the construction of 
white matter biomarkers, including pagerank_ central-
ity_ Fusiform_ R, betweenness_ centrality_ Occipi-
tal_ Inf_ L, betweenness_ centrality_ Temporal_ Inf_ L, 
betweenness_ centrality_ Postcentral_ L, and pagerank_ 
centrality_ Occipital_ Mid_ L. The white biomarkers con-
structed based on the above five features had good pre-
dictive performance in training and test sets, with AUC 
of 0.883 and 0.859, specificity of 0.903 and 0.852, and sen-
sitivity of 0.782 and 0.7, respectively, as shown in Fig. 2.

Construction and validation of the combined model
The stepwise logistic regression analysis showed that 
APOE4 and ADAS scores and white matter network bio-
markers were independent predictors of MCI progres-
sion, and a combined model was constructed, as shown 
in Table  2. The Hosmer – Lemeshow test showed that 
the combined model did not overfit (P > 0.05), and the 
calibration curve showed that the prediction efficiency of 
the combined model was consistent with the actual MCI 
progression state. The ROC curves showed that the AUC 
of the combined model was 0.924 and 0.919, sensitivity 
was 0.864 and 0.900, and specificity was 0.871 and 0.815 
in the training and test groups, respectively. The Delong 
test showed significant differences (P < 0.05) in the diag-
nostic efficacy of the combined model and APOE4 and 
ADAS scores in the training and the test groups, while 
there was no significant difference (P > 0.05) between the 
combined model and white matter network biomarkers, 
as shown in Fig.  3; Table  3. Patients were divided into 
low-risk and high-risk groups according to the best cut-
off value of 1.004. Kaplan-Meier survival curve analysis 
showed a statistically significant difference in MCI pro-
gression time between the low- and high-risk groups in 
both the training and test groups (Fig. 4).

Table 1 Comparative analysis of clinical data in the training and test sets
Characteristics ALL cohort 

(n = 121)
Training cohort (n = 84) Test cohort (n = 37) Train-

ing VS 
Test
P value

MCI stable 
(n = 62)

MCI 
progression
(n = 22)

Pvalue MCI stable 
(n = 27)

MCI 
progression
(n = 10)

Pvalue

Gender (n, %) Male 73 (60.33) 39 (62.9) 11 (50) 0.289 16 (59.26) 7 (70.00) 0.71 0.785
Female 48 (39.67) 23 (37.1) 11 (50) 11 (40.74) 3 (30.00)

APOE4
(n, %)

negative 56 (46.28) 29 (46.77) 8 (36.36) 0.398 19 (70.37) 0 (00.00) 0.001 0.458
positive 65 (53.72) 33 (53.23) 14 (63.64) 8 (29.63) 10 (100.00)

Age (year) 72.74 ± 7.3 71.1 ± 7.86 73.68 ± 7.38 0.072 73.95 ± 5.89 73.17 ± 4.52 0.707 0.254
MMSE 27.88 ± 1.65 28.06 ± 1.76 27 ± 1.51 0.014* 28.41 ± 1.12 27.20 ± 1.69 0.057 0.323
CDRS 1.37 ± 0.78 1.27 ± 0.81 1.73 ± 0.69 0.019* 1.09 ± 0.50 1.95 ± 0.90 0.015* 0.685
ADAS 9.65 ± 4.61 8.66 ± 3.43 13.49 ± 5.84 0.001* 7.81 ± 3.83 12.30 ± 4.62 0.005* 0.328
Education (years) 15.88 ± 2.68 15.73 ± 2.6 16.45 ± 2.76 0.269 16.04 ± 2.81 15.10 ± 2.77 0.372 0.803
Note. ADAS, Alzheimer’s disease assessment scale; APOE4, apolipoprotein E 4; CDRS, clinical dementia rating scale; MMSE, mini-mental state examination. * indicates 
p < 0.05

http://www.Rproject.org
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Table 2 Results of univariate and multivariate logistic regression analyses
Variable Univariate logistic regression Multivariate logistic regression

OR (95%CI) P value OR (95%CI) P value
Gender 1.258 (0.555, 2854) 0.583 NA NA
APOE4 3.512 (1.425, 8.658) 0.006 4.421 (1.240,15.765) 0.022
Age (year) 1.060 (0.999, 1.125) 0.054 NA NA
MMSE 0.666 (0.516, 0.859) 0.002 NA NA
CDRS 2.619 (1.513, 4.532) 0.001 NA NA
ADAS 1.276 (1.142, 1.426) 0.000 1.157 (1.017,1.317) 0.026
Education (years) 1.030 (0.885, 1.199) 0.701 NA NA
White Marker 2.443 (1.715, 3.480) 0.000 303.471 (28.942, 3182.065) 0.000
Note. ADAS, Alzheimer’s disease assessment scale; APOE4, apolipoprotein E 4; CDR, clinical dementia rating scale; MMSE, mini-mental state examination

Fig. 2 Figures A and B show the diagnostic effectiveness of white matter network biomarkers in the training and test groups, respectively. Figures C and 
D show the classification effectiveness of markers in training and test groups, with values less than 0 indicating stable cases of MCI, values greater than 0 
indicating progressive cases of MCI, blue indicating progressive cases, and red indicating stable cases
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Discussion
We performed a systematic and quantitative review of 
predicting the evolution of the clinical status of MCI 
patients over four years. Our results showed that the pre-
diction performance of white matter network biomarkers 

was significantly better than the scale and the APOE4 
gene alone, indicating that people with MCI progres-
sion were more sensitive to changes in the white matter 
structure network properties in the early stage than other 
clinical features. Furthermore, the combined model with 

Table 3 Performance of independent predictors and model in training and testing cohorts
Characteristics Training cohort Test cohort

AUC Sensitivity Specificity Pvalue AUC Sensitivity Specificity P value
Multimodal combinatorial model 0.924 0.864 0.871 NA 0.919 0.900 0.815 NA
White Marker 0.883 0.782 0.903 0.258a 0.859 0.7 0.852 0.306a

ADAS 0.76 0.682 0.774 0.002b* 0.757 0.500 0.963 0.046b*

APOE4 0.552 0.636 0.468 p<0.001c* 0.696 0.800 0.593 0.024c*

Note: a, b, and c indicate the comparison of diagnostic performance between the multimodal combination model and white marker, ADAS, and APOE4, respectively. 
* indicates p < 0.05

Fig. 3 Figures A and B show the diagnostic effectiveness of the combined model and other predictive factors in the training and test groups, while 
Figures C and D show the calibration curves of the model in the training and test groups
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these feature types significantly improved the predic-
tive performance, providing a valuable tool for clinically 
screening potentially AD high-risk populations.

In this study, we identified five network attribute fea-
tures, of which the Pagerank centrality was a node cen-
trality indicator, which defines the importance of a node 
as the degree to which a node is connected to other vital 
nodes [25], while the Fusiform_ R node and Occidental_ 
Mid_L node showed essential alterations in the right fusi-
form gyrus and the left occipital brain region during the 
progression of MCI. In addition, betweenness_ Central-
ity was a measure of node centrality based on the role 
of nodes as “bridges” in a network [26], indicating the 
importance or influence of this node in connecting other 
nodes in the network. These nodes may reflect changes 
in brain network function in early mild cognitive impair-
ment, which is also consistent with the results of Zhang 
et al.; namely, there is a correlation between white mat-
ter network disruption and mild cognitive impairment 
[27]. These results confirm that the structural network 
in MCI patients is associated with deterioration in dis-
ease progression and demonstrate that predicting the 
future values of the biomarkers or the images is signifi-
cant for clinical decision support systems to be adopted 
in practice.

In this study, we also confirmed that APOE4 and ADAS 
scores participated in constructing the model as inde-
pendent predictors. These results are similar to those 
reported by Li et al., who, through a meta-analysis of 60 
cohort studies, confirmed that the above two were the 
risk factors for MCI progression to AD [28]. Our find-
ings also show that using the APOE4 gene, ADAS score, 
or white matter biomarkers can predict whether MCI 
will progress to dementia. However, these indicators also 
have certain limitations. Although the APOE4 gene is 
associated with the risk of dementia, not all individuals 

carrying the APOE4 gene develop dementia [29], which 
may also be a possible reason for its poor specificity as a 
predictor. The ADAS score can reflect the level of cogni-
tive function. However, as a subjective quantitative mea-
sure, it cannot directly reflect changes in neuropathology 
[30]. Furthermore, although the diagnostic performance 
of white matter biomarkers is close to that of the com-
bined model and can also reflect some neuropathological 
changes, their changes may represent a relatively lengthy 
process of white matter microstructure transformation, 
which cannot immediately reflect whether patients with 
MCI will progress to dementia. The combined model 
constructed by integrating the above three shows the 
highest diagnostic performance and achieves high sen-
sitivity and specificity. Therefore, the combined model 
using these indicators can more comprehensively and 
accurately reflect whether MCI patients will progress to 
dementia, which may also provide new ideas and meth-
ods for dementia prevention and treatment. The model’s 
effectiveness in this study was comparatively high com-
pared to previous similar studies. Lin et al. used gray 
matter density changes and atrophy patterns in longitudi-
nal magnetic resonance structural images to predict MCI 
conversion, with an AUC of 0.984 [31]. They had a higher 
accuracy than our study; however, they only selected a 
specific slice of the brain for analysis. Our study is based 
on the structural network of the whole brain, which is 
more comprehensive. In another similar study, Sidra 
Minhas et al. constructed a prediction model using MRI-
derived biomarkers, including brain volume, surface area, 
and cortical thickness of brain regions obtained after 
cortical segmentation, combined with some neuropsy-
chological scales. The diagnostic ability of their model 
was 0.889 and 0.881 during a one-year and two-year 
follow-up period, respectively [32], while the diagnostic 
efficiency of our model was 0.919, which further suggests 

Fig. 4 The survival curve analysis of the low- and high-risk groups based on the combined model classification in the training and test groups, respectively
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that structural network features are more suitable for 
slow-progressing disease state transitions such as AD 
than structural and morphological features. In particular, 
the follow-up period of this study was four years. There-
fore, the results of this study also provide new insights for 
better prediction of MCI transitions.

The study also has certain limitations. Firstly, this is a 
single-center retrospective study. Prospective and mul-
ticenter studies are needed to verify the feasibility and 
effectiveness of the constructed model in a more exten-
sive and diverse sample. Secondly, there is some uncer-
tainty in the feature selection and modeling methods, and 
white matter network attribute features have high dimen-
sions and complexity. Therefore, selecting and combining 
these features and selecting appropriate modeling meth-
ods still require more research. Finally, this study did not 
analyze the potential correlation between white matter 
network attribute features and cognitive function, which 
may limit the clinical applications of the constructed 
model. In the future, we will consider how these features 
reflect different types of cognitive impairment and their 
progression.

This study provides strong support for the prediction 
and diagnosis of the progression of MCI diseases using 
white matter network attribute features, which helps 
to understand the mechanism of disease progression. 
Moreover, a combined model based on the white mat-
ter networks attribute features provides a valuable tool 
for the clinical screening of high-risk MCI patients and 
a reference basis for developing more accurate diagno-
sis and treatment plans for cognitive impairment-related 
diseases.
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