
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Yuan et al. BMC Medical Imaging          (2024) 24:104 
https://doi.org/10.1186/s12880-024-01274-9

BMC Medical Imaging

*Correspondence:
Sotirios Bisdas
s.bisdas@ucl.ac.uk

Full list of author information is available at the end of the article

Abstract
Background  The role of isocitrate dehydrogenase (IDH) mutation status for glioma stratification and prognosis is 
established. While structural magnetic resonance image (MRI) is a promising biomarker, it may not be sufficient for 
non-invasive characterisation of IDH mutation status. We investigated the diagnostic value of combined diffusion 
tensor imaging (DTI) and structural MRI enhanced by a deep radiomics approach based on convolutional neural 
networks (CNNs) and support vector machine (SVM), to determine the IDH mutation status in Central Nervous System 
World Health Organization (CNS WHO) grade 2–4 gliomas.

Methods  This retrospective study analyzed the DTI-derived fractional anisotropy (FA) and mean diffusivity (MD) 
images and structural images including fluid attenuated inversion recovery (FLAIR), non-enhanced T1-, and 
T2-weighted images of 206 treatment-naïve gliomas, including 146 IDH mutant and 60 IDH-wildtype ones. The lesions 
were manually segmented by experienced neuroradiologists and the masks were applied to the FA and MD maps. 
Deep radiomics features were extracted from each subject by applying a pre-trained CNN and statistical description. 
An SVM classifier was applied to predict IDH status using imaging features in combination with demographic data.

Results  We comparatively assessed the CNN-SVM classifier performance in predicting IDH mutation status using 
standalone and combined structural and DTI-based imaging features. Combined imaging features surpassed stand-
alone modalities for the prediction of IDH mutation status [area under the curve (AUC) = 0.846; sensitivity = 0.925; 
and specificity = 0.567]. Importantly, optimal model performance was noted following the addition of demographic 
data (patients’ age) to structural and DTI imaging features [area under the curve (AUC) = 0.847; sensitivity = 0.911; and 
specificity = 0.617].

Conclusions  Imaging features derived from DTI-based FA and MD maps combined with structural MRI, have superior 
diagnostic value to that provided by standalone structural or DTI sequences. In combination with demographic 
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Introduction
Mutations in the isocitrate dehydrogenase (IDH) genes 
define the brain tumour types IDH-mutant astrocy-
toma central nervous system (CNS) World Health 
Organization (WHO) grade 2, 3, and 4 and oligo-
dendroglioma CNS WHO grade 2 and 3 (previously 
termed diffuse Astrocytoma IDH-mutant WHO grade 
II, Anaplastic astrocytoma WHO Grade III, and Glio-
blastoma IDH-mutant WHO Grade IV and oligodendro-
glioma or anaplastic oligodendroglioma WHO grade II 
or III, respectively) [1]. The IDH mutation is linked to the 
pathogenesis of these two tumour types and is thought 
to increase the intracellular hypoxia-inducible factor-1α, 
which induces angiogenesis and mediates the evasion of 
tumour cells [2–4]. Patients with IDH-mutant low-grade 
gliomas (LGGs) can have better prognosis compared 
with those with wildtype IDH status. This is pronounced 
when the IDH-wildtype status is linked to a telomerase 
reverse transcriptase (TERT) promoter mutation, chro-
mosome 7 trisomy and chromosome 10 monosomy, and 
possibly also epidermal growth factor receptor (EGFR) 
amplification, which are diagnostic features of glioblas-
toma, IDH-wildtype, CNS WHO grade 4 [5]. Targeted 
drugs and vaccines focusing on IDH mutation have 
introduced the era of targeted therapy in gliomas [6, 7]. 
Therefore, IDH status prediction is essential not only for 
the diagnosis but also for prognostication and treatment 
planning of patients with gliomas. Determination of IDH 
mutation status is usually performed on biopsy material, 
i.e. invasively, using either a mutation-specific antibody 
on tissue section, or nucleic acid-based test methods, 
such as Sanger sequencing or next generation sequenc-
ing methods, or (indirectly) deoxyribonucleic acid (DNA) 
methylation arrays. Although current trends in patient 
management favour radical surgery, treatment selection 
depends on individual patient characteristics as well as 
risk estimation [8–12]. More importantly, surgical out-
comes can depend on tumour molecular characteristics 
and predominantly on IDH mutation status [12, 13]. 
It is therefore advantageous if IDH mutation status can 
be characterized in advance of treatment decision mak-
ing, ideally with efficient non-invasive tools. To this end, 
image analysis enhanced by artificial intelligence has pro-
vided promising outcomes [14, 15].

Considerable attempts have been made to identify 
non-invasive imaging biomarkers for IDH-mutation sta-
tus prediction [10, 16, 17]. Initial evidence shows that 
magnetic resonance spectroscopy (MRS) can quantify 
the 2-hydroxyglutarate (2-HG) levels and enable the 

non-invasive identification of IDH mutant gliomas [18], 
but the rates of false positives and false negatives can be 
high when the tumour has low-to-moderate cellularity 
or when necrosis to tumour ratio is high [19–21, 3, 22]. 
In terms of vascular proliferation, magnetic resonance 
(MR) perfusion can gauge the degree of neo-angiogenesis 
and potentially predict IDH mutation status [19, 23–25]. 
However, the proposed methodology yielded moderate 
discriminative power, likely due to the highly variable 
perfusion patterns in gliomas and the high variability of 
acquisition and analysis protocols across several partici-
pating centres [26].

Diffusion tensor imaging (DTI) is an advanced imag-
ing technique that allows white matter fibre tracking 
for preoperative planning as well as for tumour grading 
and differentiation of tumour recurrence from radia-
tion necrosis [27]. A previous study showed that preop-
erative B0 and fractional anisotropy (FA) have potential 
value in discriminating IDH-mutant from IDH-wildtype 
WHO grade 2 or 3 gliomas [10]. Similarly, Xiong et al. 
reported significantly higher minimal apparent diffusion 
coefficient (ADC) values and lower maximal FA values 
in oligodendroglial IDH-mutant tumours compared with 
their IDH wildtype counterparts [28]. However, those 
DTI studies only addressed the diagnostic task in certain 
grades or types of gliomas, rather than the whole range 
of histologically proven CNS WHO grade 2–4 gliomas. 
Limited radiogenomics research studies investigate the 
role of DTI, compared with structural magnetic reso-
nance imaging (MRI), for the non-invasive classification 
of IDH status based on the profiles of invasiveness, higher 
angiogenesis, and cell proliferation [29–31]. Meanwhile, 
some studies evaluating the value of diffusion kurtosis 
imaging (DKI) suggested DKI was superior to DTI in 
IDH genotype prediction [32–34]. However, the num-
bers of cases studied were comparatively small, and the 
applied DKI algorithm was based on isotropic diffusion 
acquisitions which may potentially introduce inaccuracy 
into the kurtosis tensor estimation.

In the current study, we sought to solidify current evi-
dence on the efficacy of DTI to non-invasively detect 
IDH-mutation status across various glioma grades (CNS 
WHO grades 2–4). To this end, we built upon recent 
advances in AI and combined a support vector machine 
(SVM) classifier with feature differentiable, replac-
ing complex human-designed pipelines. The resulting 
convolutional neural networks (CNN) -SVM differen-
tiable model incorporated DTI and structural images of 
different from multiple scanners and allowed both 

information, this CNN-SVM model offers a further enhanced non-invasive prediction of IDH mutation status in 
gliomas.

Keywords  IDH, Mutation status, Prediction, DTI, Deep neural network, Supervised learning, CNN, SVM



Page 3 of 15Yuan et al. BMC Medical Imaging          (2024) 24:104 

comparative and combinatory assessment of datasets. 
With this model, we aspire to provide a versatile tool, 
applicable for non-invasive IDH-mutation status predic-
tion in diverse settings.

Materials and methods
Patient population
This retrospective study was approved by the local 
Research Ethics Committee (University College London 
/ University College London Hospitals Joint Research 
Office: Reference number 213920, North West - Liv-
erpool Central Research Ethics Committee: Reference 
number: 18/NW/0395) and written informed consent 
was waived. Institutional and departmental databases 
were queried between February 2009 to February 2021 
from the Department of Neuroradiology, University Col-
lege London Hospitals NHS Foundation Trust, London 
to find all adult patients (age ≥ 18 years) with histologi-
cally confirmed CNS WHO grade 2–4 gliomas. Patients’ 
data were included based on the availability of (a) histo-
pathologically confirmed IDH mutational status, (b) pre-
treatment MRI including routine structural sequences 
and DTI. We excluded cases with unavailable structural 
imaging, corrupt images or motion artefacts, and incon-
clusive histological and molecular diagnosis.

IDH mutation diagnosis
Histomolecular characterization of the gliomas included 
in this retrospective study was based on the 2016 WHO 
classification of CNS tumour and the cIMPACT-Now 
guidelines, at the Department of Neuropathology, Uni-
versity College London Hospitals NHS Foundation Trust, 
London, including the tumour molecular profiles of IDH 
mutation status, 1q/19q codeletion status, O6-methyl-
guanine-DNA methyltransferase (MGMT) promoter 
methylation status, EGFR amplification, TERT promoter, 
alpha-thalassemia/mental retardation X-linked (ATRX) 
mutation status [35, 36]. IDH1/2 and TERT promoter 
mutational status were confirmed by Sanger sequencing 
[37, 38]. Molecular markers including 1q/19p codeletion 
status, MGMT, EGFR amplification were tested using a 
quantitative polymerase chain reaction (qPCR) assay 
[19].

Image acquisition
All images were acquired on three clinical 3.0 Tesla MR 
scanners (Trio Tim, Skyra and Prisma, Siemens Health-
ineers, Erlangen, Germany) with 32- or 64-channel head 
coils. Specifically, there were 112 cases from the Trio 
Tim scanner, 12 cases from the Skyra, and 82 cases from 
the Prisma scanner. The acquisition parameters of the 
three-dimensional (3D)T1-, T2- weighted images and 
fluid attenuation inversion recovery (FLAIR) images 
were as follows: repetition time (TR) = 510–600 ms, echo 

time (TE) = 30–37 ms for T1-weighted images (T1WI); 
TR = 4100–4780 ms, TE = 86–98 ms for T2-weighted 
images (T2WI); TR = 1000 ms, TE = 45 ms, inversion 
time = 800–810 ms for FLAIR images. The field of view 
(FOV) was 200 × 200 mm2 and a matrix of 200 × 200. The 
DTI acquisition parameters were as follows: a single-shot 
(SS) spin-echo (SE) echo-planar imaging (EPI) sequence 
was used with TR = 7600-9400ms, TE = 70–84 ms, b-val-
ues = 1000–3000 s/mm2. The images were encoded in 30 
directions for each b-value with FOV of 236 × 236 mm2 
and a matrix of 128 × 128. The total acquisition time was 
25–35 min for the structural and DTI images. All images 
were resampled to 1× 1× 1 mm3.

Image post-processing and registration
Fractional anisotropy (FA) and mean diffusivity (MD) 
parametric maps were calculated on a voxel-by-voxel 
basis, and the values of FA and MD were obtained as 
the average of all 30 directions of the highest b-value. 
Co-registration between the structural images and DTI 
parametric maps was performed based on geometric 
information using FSL (FLIRT-FMRIB’s Linear Image 
Registration Tool, Oxford, UK; http://www.fmrib.ox.ac.
uk/fsl/) [39]. For every case, the T1WI, T2WI, FA and 
MD were co-registered with reference to FLAIR. Con-
sidering the variability of resolution in different images, 
the MRI images and masks were resampled into the same 
isotropic grid via linear interpolation. The intensity nor-
malisation between cases was implemented in MATLAB 
R2014b (Mathworks, Natick, MA) using Z-score normal-
isation. Skull and scalp stripping was conducted via the 
BET brain extraction module in FSL, generating a better 
recognition for CNN mapping.

Image segmentation, feature extraction and classification
Tumour regions of interest (ROIs) were outlined on 
3D-FLAIR images using semiautomatic segmenta-
tion software (ITK-SNAP 3.6.0-rc1, Snake Interaction 
Mode) and verified by one radiologist with neuroimag-
ing direction (J.Y, 10 years of reader experience) and one 
neuroimaging consultant (S.B.2, 10 years of consultant 
experience). Where considerable variability occurred 
in the outlined ROIs, final segmentation was based on 
consensus between the readers. The segmented vol-
ume contour was based on the hyperintense region in 
FLAIR images on multiple slices (Fig.  1), including any 
microscopic areas of cystic changes, calcification, hem-
orrhagic foci, and necrosis, but excluded large vessels 
within the tumour and macroscopic cysts and necrosis. 
To ensure the robustness and reliability of the data qual-
ity, another neuroimaging consultant (S.B.1, 12 years of 
experience) conducted a visual quality assurance (QA) 
check on the 30 randomly selected cases. Referent masks 
were derived for evaluating the overlap metrics. The Dice 

http://www.fmrib.ox.ac.uk/fsl/
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Similarity Coefficient (DSC) [40] was computed for each 
pair of masks, and acceptable data quality required the 
minimum DCS value > 0.95. The mean value of FA and 
MD in the contralateral normal-appearing white matter 
(NAWM) at centrum semiovale was also extracted using 
a standardised ROI for testing any collinearity of the 
DTI values with the age and gender of the patients. The 
tumour ROIs created from the anatomical images were 
subsequently applied to the DTI images.

The feature extraction process was conducted in 
MATLAB R2021a. The experiments were carried out 
on Ubuntu 20.04 with an NVIDIA GeForce RTX 2080 
Ti GPU and an Intel Core i7-9700 K 3.60 GHz CPU. For 
each subject with one MR modality, the tumour MR 
image was fed into the pre-trained VGG16 [41] model 
(see Fig.  2), and its radiomics features were extracted 
from multiple convolutional layers which learnt differ-
ent levels of texture and shape information. From each 
feature map in the convolutional layer, six statistical fea-
tures including mean, median, standard deviation, 5th 

and 95th percentiles and kurtosis, were extracted. Then 
all the features from multiple levels were concatenated 
into one feature vector. As the size of the feature vec-
tor grows considerably when the number of used layers 
increases, in practice, we extracted the radiomics from 
the first four convolutional layers. For example, when 
using the combination of FA and MD modalities, the 
feature vector size using the first three convolutional lay-
ers is 2 * 6 * (1 + 64 + 64 + 128) = 3084. The time required 
to extract all features from one case using the pretrained 
VGG16 model was estimated via CPU, and mean value 
over several test cases is 41.92  s (confidence intervals 
41.30–42.70).

In the classification stage, the features and their cor-
responding IDH mutation status were used to train 
an SVM [42], which is a top-performing classifier that 
constructed a decision boundary to separate the two 
groups based on the mutation status. The code for clas-
sification was implemented with MATLAB R2020b. The 
experiments were carried out on Ubuntu 18.04 with an 

Fig. 1  Graphical example of tumour segmentation process beginning from FLAIR and ending in co-registered FA and MD. Example slice of the ROIs 
drawn on the whole tumour on FA (B, E) and MD (C, F) parametric maps, based on parametric maps (D) which created from FLAIR (A)
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NVIDIA GeForce RTX 2080 Ti GPU and an Intel Core 
i7-9700 K 3.60 GHz CPU. The kernel parameter is radial 
basis function (RBF). The outputs of SVM (the distance 
to the decision boundary) were then calibrated into pos-
terior probabilities by training an additional sigmoid 
function [43]. A nested five-fold cross validation setting 
was used as the evaluation protocol with the inner loop 
for parameter selection and the outer loop for model 
evaluation (see Fig. 3), considering the nested cross-val-
idation as an almost unbiased estimate of the true error 
and a suitable method for a small dataset [44]. In each 
fold of the nested cross-validation, the optimal hyper-
parameters of the classifier were chosen based on an 
internal validation which is 20% of the training set. Spe-
cifically, we consider the recall, and F1-score as the evalu-
ation metrics to monitor the classifier performance. The 
optimal parameters and kernel choice of SVM (C, γ) were 
found by grid search using the inner cross-validation and 
the outer one was used to assess the final prediction per-
formance on the validation set in each fold.

Statistical methods and evaluation metrics
Statistical analysis was performed using Python software 
(version 3.6). Given the wide age range of the patients 
and the reported age-related changes in FA and MD in 
white matter [45], we first checked whether there were 
any significant correlations between NAWM and patient 
age or gender using linear regression tests and Pearson’s 
chi square tests, respectively. A Welch two-sample t-test 
or a Mann-Whitney U-test, and a Pearson’s chi-squared 
test with Yates’ continuity correction were used to deter-
mine whether any of the clinical characteristics, includ-
ing age and gender, were correlated to IDH mutation. 

Secondly, we assessed the predictive power of DTI, struc-
tural images and their different combinations by calcu-
lating the sensitivity and specificity of the algorithm for 
standalone and combined modalities. We also reported 
the receiver operating characteristic (ROC) curve and the 
area under the curve (AUC). In all cases, statistical sig-
nificance was indicated at a level < 0.05.

Results
Clinical characteristics
A cohort of 206 cases was eligible and enrolled for the 
IDH phenotypes analysis. The participant flow chart is 
shown in Fig.  4. The final cohort included 100 females 
and 106 males; 146 of the patients had IDH mutant and 
60 had IDH wild-type gliomas. The clinical characteris-
tics of our participants are summarised in Table  1. The 
mean age of all participating patients was 44.0 years 
(range: 19–77 years). There was no significant correlation 
between patients’ age and the FA and MD values of the 
NAWM (P = 0.06 and P = 0.66, respectively). Also, there 
was no significant correlation between patients’ gender 
and the FA and MD values of the NAWM (P = 0.44 and 
P = 0.59, respectively). Patients with IDH mutant glio-
mas (mean age±SD :  39.1±8.7  years) were younger than 
those with IDH wild-type gliomas (mean age±SD :  55.1 
±13.5 years, p < 0.001). Gender was not correlated to 
IDH mutation type in our study.

Image quality assurance, comparison of DTI, structural MRI 
and their combinations
The DSC values in the checked masks were within 
acceptable limits, with a minimum DSC value of 0.98, 
the data was thus considered acceptable for further 

Fig. 2  The feature extraction process was based on a pre-trained VGG [41] network and mutation status prediction was executed using an SVM [42] 
classifier. Six statistical features were extracted from each convolutional layer in a multi-level manner and were then concatenated into a feature vector
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analysis. We first compared the predictive power of deep 
radiomics extracted from DTI (FA and MD), structural 
MRI (FLAIR, T1 and T2) and their combinations in auto-
mated classification of IDH mutation status. A fair com-
parison was achieved by reporting the performance on 
the same validation sets in nested five-fold cross valida-
tion in which the machine learning model was trained on 
the same patients. For each patient, deep radiomics fea-
tures were extracted individually for each modality and 
their combinations, and then used to train a statistical 
SVM classifier.

As shown in Table 2, DTI itself brought highly discrim-
inative information and achieved an AUC of 0.832 and 
sensitivity of 90.4%, while structural modalities attained 
an AUC of 0.730 and sensitivity of 92.5%. Combining DTI 
and structural modalities demonstrating an improvement 
in diagnostic performance with a higher AUC than the 
standalone techniques (0.846 vs. 0.832 and 0.730).

In rows 2 and 5 in Table 2, it is evident that combining 
FLAIR images with DTI, could improve the AUC from 
0.730 to 0.846 and specificity from 0.367 to 0.567, while 
maintaining the same sensitivity of 0.925.

We further investigated the potential advantages 
of integrating the demographic information into the 
machine learning to enhance the predictive power. The 
combination of DTI with structural and patients’ age led 
to the highest AUC of 0.847 (see Fig. 5), along with the 
highest specificity of 61.7%. The diagnostic performance 
using the combination of imaging and demographics was 
significantly different when compared with the combina-
tion of DTI with structural images (P = 0.003) (Table 3).

Analysis on individual layers
To ensure the discriminativeness of the selected layers, 
we analysed the individual features extracted from layer 
1 to layer 5 (Table  4). We concluded that the first four 

Table 1  Clinical characteristics
Total IDH 

mutant
IDH wild 
type

P value

Number of cases 206 146 60
Age (mean ± std, 
years)

44.0±12.8 39.1±8.7 55.1±13.5 0.00 §

Gender 0.20*
Female 100 (49%) 75 (51%) 25 (42%)
Male 106 (51%) 71 (49%) 35 (58%)
Note. §The difference between the two groups was evaluated using the Mann-
Whitney U-test because the data was not normal distribution according to 
Shapiro-Wilk test. *The correlation between the two groups was evaluated 
using the Pearson’s Chi-squared test with Yates’ continuity correction

Fig. 3  5-fold nested cross-validation. The kernel parameter is radial basis function (RBF), and penalty parameter C and γ values are determined by grid 
search in the internal loop of the nested cross validation stage, which were not fixed
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Table 2  Different combinations of imaging modalities revealed that DTI metrics (FA and MD) serve as effective biomarkers, and can be 
further enhanced by integrating structural modalities
Modality True Positive False Positive True Negative False Negative Sensitivity Specificity AUC
FA + MD 132 27 33 14 0.904 0.550 0.832
T1 + T2 + FLAIR 135 28 32 11 0.925 0.367 0.730
FA + MD + FLAIR 133 25 35 13 0.911 0.583 0.846
FA + MD + T1 + FLAIR 133 26 34 13 0.911 0.567 0.835
FA + MD + T1 + T2 + FLAIR 135 26 34 11 0.925 0.567 0.846
FA + MD + T1 + T2 + FLAIR + age 133 23 37 13 0.911 0.617 0.847

Fig. 4  Participant flow
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layers yielded comparable performance whilst the 5th 
layer showed a significant drop. Thus, only the first four 
layers were subsequently included.

Feature visualisation
To assess the interpretability of the deep radiomics fea-
ture, we randomly selected four feature maps from each 
convolutional layer and visualised them in a heatmap. 
Figure 6 shows the results of one mutation case and one 
wildtype case. We found that the shape, boundary and 
texture of tumour were well visualised in different layers 

using the proposed computational approach. Apparently, 
such information may not be easily perceived and classi-
fied by humans reviewing the DTI images.

Discussion
We present a deep radiomics approach to extract imag-
ing-based features from DTI and structural images for 
the prediction of IDH mutation status of CNS WHO 
grade 2–4 gliomas within a single centre, multi-scanner 
setting. This effort builds upon CNN models, leveraging 
an SVM classifier with feature differentiablity, enabling 

Table 3  Statistics analysis of various combinations of imaging modalities and demographic information. The p-values were adjusted 
after correcting the false discovery rate under multiple hypotheses
Comparison FA + MD

vs.
T1 + T2+
FLAIR

FA + MD + T1 + T2+
FLAIR + age
vs.
FA + MD

FA + MD + T1 + T2+
FLAIR + age
vs.
T1 + T2 + FLAIR

FA + MD + T1 + T2+
FLAIR + age
vs.
FA + MD+
T1 + T2 + FLAIR

p-value < 0.0001 < 0.0001 0.0005 0.003

Table 4  Analyses on the discriminativeness of involved features from FA and MD modalities in different layers. Layer 0 denotes 
traditional radiomics features [46] from input images
Layers number 0 1 2 3 4 5
AUC 0.813 0.832 0.825 0.833 0.835 0.801
Sensitivity 0.904 0.904 0.911 0.911 0.911 0.911
Specificity 0.533 0.550 0.533 0.550 0.567 0.364

Fig. 5  ROC curves of the performance using different combinations of imaging modalities. We observed that the information extracted from DTI and 
structural MR modalities were complementary in IDH mutation status prediction. Meanwhile, adding the variable of ‘age’ had significant contribution to 
the predictive performance
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both comparative and combinatory assessments of data-
sets. This differentiable model harnesses the potential of 
combining DTI and structural MRI for versatile, non-
invasive IDH mutation status prediction in diverse clini-
cal settings.

Our study demonstrates that DTI features are effective 
biomarkers independent from their structural MRI coun-
terparts. Specifically, our preliminary results show that 
our predictive model achieved a higher diagnostic per-
formance based on standalone DTI features compared to 
standalone structural features (sensitivity of 90.4%, speci-
ficity of 55.0% and AUC of 0.832 compared to 92.5%, 
36.7% and 0.730 respectively). The combination of DTI 
and structural features yielded further improvement in 
diagnostic performance with a higher AUC (AUC = 0.846) 
compared to standalone DTI (AUC = 0.832) or struc-
tural (AUC = 0.730) features. Further enhancement in 

predictive power was observed following the incorpora-
tion of demographic information, namely patients’ age, 
with the combined DTI and structural imaging features, 
leading to the highest AUC (0.847). Our methodology 
is characterised by strengths and weaknesses, however, 
builds on previous studies and warrants further work in 
the field.

Our results indicate a strong correlation between DTI-
derived imaging features based on FA and MD and IDH 
mutation status in gliomas. This is consistent with previ-
ous studies which highlighted the promising role of DTI 
in probing tumoural microstructure and predicting IDH 
mutation status in gliomas [10, 47–49]. We postulate that 
decreased MD values identified in IDH wild-type gliomas 
reflect increased cellularity in these tumours, which is a 
downstream effect of upregulation of the HIF1A path-
way leading to increased hypoxia, higher angiogenesis, 

Fig. 6  Visualisation of the features captured by each convolutional layer. We found that shape, edge, and texture information were captured in different 
layers
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and cell proliferation [30, 50]. Another possible explana-
tion for our results is that the MD and FA values may be 
influenced by the composition of the extracellular matrix. 
Evidence suggests that the increased levels of glycosami-
noglycan hyaluronan found in astrocytomas and oligo-
dendroglial tumours positively correlate with MD values 
[31]. Previous studies revealed that the tumour FA values 
were positively correlated with the proliferative potential 
of gliomas [51–53], and could be employed to distinguish 
IDH-mutant from wildtype gliomas [54, 55]. Hence, we 
believe that FA and MD may be sensitive to early patho-
logical changes and tumour heterogeneity and can be 
reliable IDH status predictors, superior to conventional 
structural images.

Notably, previous studies inevitably used a nomencla-
ture according to the WHO 2016 classification [29, 30, 
54, 55], and some tumour types (previously known as 
“entities”) have been renamed but correspond to the same 
molecular profile. For example, astrocytoma IDH-mutant 
CNS WHO grade 2, 3, and 4 tumours correspond to the 
previous diffuse astrocytoma IDH mutant WHO grade II, 
anaplastic astrocytoma IDH-mutant WHO grade III, and 
glioblastoma IDH-mutant WHO grade IV, respectively. 
Likewise, oligodendroglioma IDH-mutant and 1p/19q 
codeleted CNS WHO grade 2 and 3 tumours, corre-
spond to oligodendroglioma IDH-mutant and 1p/19q 
codeleted WHO grade II, or anaplastic oligodendro-
glioma IDH-mutant and 1p/19q codeleted WHO grade 
III, respectively. Importantly, at our centre, we applied 
an integrated diagnosis for histologically low-grade 
appearing IDH-wildtype gliomas with TERT promoter 
mutation and other molecular features corresponding to 
glioblastoma IDH-wild-type WHO grade IV according to 
the 2016 classification and the cIMPACT-Now guidelines 
[35, 36]. Thus, in contrast to many previous studies, our 
study investigates differences in DTI metrics between 
IDH mutant and wildtype gliomas within a cohort which 
pragmatically incorporates all glioma grades (CNS WHO 
grade 2–4) [10, 47–49].

We aspired to provide a generalisable tool that can be 
applied for non-invasive classification of IDH-mutation 
status in different technical parameters. To accommo-
date this, we included data derived from three 3T MR 
scanners. In contrast, a large portion of previous work 
was conducted in a single scanner design [28, 29, 55]. 
However, a well-trained model from a single scanner 
may not be applicable to a different scanner or centre, 
hence impeding its clinical utilisation. For example, Li et 
al. reported successful application of radiomics for pre-
dicting the IDH mutation status in LGGs, achieving a 
remarkable AUC of 95% [17]. Nevertheless, such results 
may be rather optimistic due to a confined well controlled 
cohort, with limited applicability in different scanner and 
population settings. Our study utilized data from three 

different scanners and was conducted at a single institu-
tion, specifically a national tertiary neuro-oncology refer-
ence centre with strengths including comprehensive care 
and a remarkable ethnic diversity of the patient popula-
tion. Our study was intended to be further generalisable 
through image normalisation and fine-tuning, though 
this may be the reason for the lower AUC. Additionally, 
The observed discrepancy in specificity (56.7%) despite 
commendable AUC (0.846) and sensitivity (92.5%) could 
be attributed to several factors: Predicting IDH mutation 
status may be a complex task with overlapping features 
between mutation and non-mutation cases. The model 
might identify certain imaging features associated with 
the mutation but struggle with specific characteristics 
that distinguish non-mutation cases; the features used 
for prediction may have a higher impact on sensitiv-
ity than specificity. The model may be more sensitive to 
characteristics associated with IDH mutation, leading to 
higher true positive rates at the expense of specificity. In 
the context of gliomas harboring IDH mutations, there 
might be a clinical expectation to identify such cases for 
tailored therapeutic interventions. This could include tar-
geted therapies like IDH inhibitors, DNA repair inhibi-
tors, and immunotherapy, which may benefit relapsed 
or refractory IDH-mutant glioma patients, particularly 
to reduce the long-term toxicities, including cognitive 
decline caused by conventional treatments. Our model 
with noteworthy AUC and sensitivity may help in the 
above-mentioned situation. Finally, the acquired satis-
factory and encouraging results are in accordance with 
other multi-scanner and multi-centre studies, which have 
reported realistic generalisable prediction rates for non-
invasive IDH mutation status determination [19, 56, 57].

To make our technique more agnostic and less depen-
dent on input for multiple modalities, we chose to base 
segmentations on the universally employed FLAIR 
images. Currently, other methodologies employ volu-
metric measurements based on enhancing tissue on 
post contrast T1WI. However, tumour cells have been 
described to exist outside the contour of the enhancing 
tumours being part of the complex tumour micro-envi-
ronment, causing the notorious peritumoural infiltration 
zone in the gliomas [58]. FLAIR images may be more 
representative of the actual extent of tumour infiltra-
tion, albeit in combination with vasogenic oedema in the 
peritumoural brain parenchymal zone (PBZ) [59]. In our 
study, IDH wild-type gliomas did not demonstrate sig-
nificantly larger volumes in our ROI compared with their 
IDH mutant counterparts. This may be partly attrib-
uted to more pronounced oedema characterising IDH 
wild-type neoplasms and in contrast larger solid tumour 
components characterising IDH mutant type gliomas, 
consistent with previous studies [60, 61]. Interestingly, 
standalone FLAIR sequences proved not to be beneficial 
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for the prediction of IDH phenotype, even when com-
bined with DTI. A possible explanation is that T2WI 
and pre/post contrast T1WI sequences provide comple-
mentary information regarding the tumour microvascu-
lar proliferation and/or necrosis, which are established 
diagnostic and prognostic biomarkers for IDH wildtype 
gliomas [11, 62, 63]. Such an explanation is supported 
by our best performing model which is multimodal and 
incorporates the combination of FA, MD, T1WI, T2WI 
and FLAIR.

Our study encompasses distinct methodological dif-
ferences to previous studies and contributes additional 
knowledge to the field [47–49]. In most studies, the size 
of the DTI dataset used in identifying IDH mutation sta-
tus is relatively small compared to the publicly available 
structural images (such as FLAIR, T1 and T2) [57, 64], 
because DTI is not routinely applied in general clini-
cal practice. To get robust estimation of the proposed 
method, we adopted nested five-fold cross validation to 
alleviate the potential negative effect of insufficient num-
ber of samples. We included a small fraction of data that 
were randomly split from the original dataset and kept 
untouched for use as a test dataset in our 5- fold nested 
cross-validation (see Fig.  3) [64–66]. Prior to our pro-
posal for a deep radiomics approach, we attempted sev-
eral end-to-end deep learning techniques, such as 2D and 
3D DenseNet, which however did not yield promising 
outcomes in our multi-scanner cohort (data is not pro-
vided). This likely reflects limitations of training a deep 
neural network on heterogeneous datasets with limited 
data samples. We followingly sought a hybrid approach 
by combining deep learning with traditional machine 
learning. We claim that such a combination benefits 
feature extraction given the small number of samples. 
Model performance often degrades using multi-scan-
ner and multi-centre cohorts, as shown by similar work 
using the Cancer Imaging Archive (TCIA) which studied 
structural images rather than DTI [56, 57]. On the other 
hand, we have an unbalanced cohort as expected because 
IDH1 or IDH2 mutations are common in 70–80% of 
gliomas [10, 29]. Admittedly, the unbalanced cohort can 
negatively affect the classifier. To account for this, we 
used ‘class weights’ for weighting strategy considering 
class imbalance in the SVM. Specifically, smaller weight 
(= 1) is assigned to the majority class (IDH mutant) and 
larger weight (= 3) to the minority class (IDH-wildtype). 
Before weighting, our DTI + structural model had sensi-
tivity = 0.911, specificity = 0.526, AUC = 0.817 and after 
weighting these slightly improved (sensitivity = 0.925, 
specificity = 0.567, AUC = 0.846). In addition, to enhance 
the validation of our approach, we tested our final mod-
els from five folds on a balanced test set comprising 20 
patients added subsequently to the study. This test set 
was equally divided to represent each mutation status, 

with 10 patients per category. The predictions on the sep-
arate test were obtained by an ensemble of the average 
of five models form five folds. The sensitivity, specificity, 
precision, AUC are 1.000, 0.602, 0.601, and 0.834 respec-
tively, demonstrating the robustness of our method.

There are a few limitations in our work. First, we 
extracted a high number (> 3000) of feature variables 
from the imaging data and this may impede the inclu-
sion of other variables, such as demographical informa-
tion, which could potentially enhance the predictive 
power. Dimensionality reduction techniques such as 
principal component analysis [67] shall be investigated in 
future work so that the role of clinical variables could be 
enhanced. Autoencoder [68] or variational autoencoder 
[69] might be a good alternative for low-dimensional fea-
ture exaction in our future work. Second, although we 
performed analysis based on a multi-scanner cohort, the 
effect of the scanner to the performance of the machine 
learning model and the generalisability of the method to 
data from unseen scanners, have not been formally inves-
tigated. To account for potential differences in FA and 
MD values between different scanners, we performed 
a comparative leave-one-scanner-out calculation. We 
removed the 11 cases conducted by Skyra 3T MR scan-
ners (b value = 1400  s/mm2) from the training dataset 
in our DTI and structural images model, with resulting 
sensitivity = 0.870, specificity = 0.553 and AUC = 0.765. 
P = 0.00. Our comparative estimation demonstrates 
that different b values of DTI scan protocol may affect 
the outcomes of our prediction model. Further study 
should be performed regarding the impact of different b 
values to the generation of DTI radiomic model. Third, 
the CDKN2A/B mutation was not assessed in all IDH-
mutant samples in our cohort; since the presence of 
CDKN2A/B homozygous deletion results in CNS WHO 
grade 4 rather than grade 2/3 tumour staging, even in the 
absence of microvascular proliferation or necrosis [62]. 
However, as there is a significant overlap of histologi-
cal high-grade features (i.e. necrosis and microvascular 
proliferation) with the molecular feature of CDKN2A/B 
homozygous deletion, the risk of misclassification is min-
imal in our cohort. For IDH-wildtype gliomas, whether 
the CDKN2A/B status is diagnostically and prognosti-
cally irrelevant has not been systematically examined. 
In the meantime, all IDH mutant tumours diagnosed at 
our institution are being examined with Illumina epic 
arrays which provide readout also for the copy number 
profile, i.e. chromosomal gains, losses, and gene ampli-
fications and deletions such as 1p/19q codeletion in oli-
godendroglioma, or for IDH mutant astrocytomas, the 
CDKN2A/B, homozygous deletion to establish a CNS 
WHO grade 4 in IDH-mutant astrocytomas. Fourth, 
recent deep learning methods, such as Transformer [70], 
which can capture long-range dependencies, might learn 
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effective feature representation in the 3D multi-modality 
setting. Hematological factors (e.g., CD4 + T cells, neu-
trophils, the neutrophil/lymphocyte ratio [71, 72]) and 
other MRI methods (e.g., dynamic susceptibility contrast 
magnetic resonance imaging, perfusion, diffusion kurto-
sis images [34, 73, 74]), have prognostic value for glioma. 
Therefore, performing a reader analysis to compare the 
diagnostic performance of our CNN-SVM model would 
be meaningful. Additionally, refining the deep learning 
method and incorporating more biomarkers and MRI 
parameters are inspiring aims for future work.

Conclusion
This study demonstrates that the integration of structural 
MRI and DTI features improves prediction performance 
compared with structural MRI or DTI alone, by using a 
deep radiomics approach. Further enhancement of diag-
nostic accuracy can be achieved by incorporating demo-
graphic information, specifically patients’ age, in the 
model. The applied CNN-SVM network showed poten-
tial for an automated prediction of IDH mutation status, 
and our work proposes a clinically feasible approach for 
optimisation of patient management through non-inva-
sive IDH status prediction in gliomas. Nevertheless, the 
challenge of improving diagnostic accuracy remains and 
further research is required to validate and increase the 
model performance in a multi-centre background.
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