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Abstract 

Objective  To exploit the improved prediction performance based on dynamic contrast-enhanced (DCE) MRI 
by using dynamic radiomics for microvascular invasion (MVI) in hepatocellular carcinoma (HCC).

Methods  We retrospectively included 175 and 75 HCC patients who underwent preoperative DCE-MRI from Septem-
ber 2019 to August 2022 in institution 1 (development cohort) and institution 2 (validation cohort), respectively. Static 
radiomics features were extracted from the mask, arterial, portal venous, and equilibrium phase images and used 
to construct dynamic features. The static, dynamic, and dynamic–static radiomics (SR, DR, and DSR) signatures were 
separately constructed based on the feature selection method of LASSO and classification algorithm of logistic regres-
sion. The receiver operating characteristic (ROC) curves and the area under the curve (AUC) were plotted to evaluate 
and compare the predictive performance of each signature.

Results  In the three radiomics signatures, the DSR signature performed the best. The AUCs of the SR, DR, and DSR 
signatures in the training set were 0.750, 0.751 and 0.805, respectively, while in the external validation set, the corre-
sponding AUCs were 0.706, 0756 and 0.777. The DSR signature showed significant improvement over the SR signature 
in predicting MVI status (training cohort: P = 0.019; validation cohort: P = 0.044). After external validation, the AUC 
value of the SR signature decreased from 0.750 to 0.706, while the AUC value of the DR signature did not show 
a decline (AUCs: 0.756 vs. 0.751).

Conclusions  The dynamic radiomics had an improved effect on the MVI prediction in HCC, compared with the static 
DCE MRI-based radiomics models.
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Background
Hepatocellular carcinoma (HCC) is the fourth most 
deadly cancer worldwide [1]. Liver resection and trans-
plantation are the most effective curative treatment 
methods, although the postoperative recurrence rate 
remains high [2]. Microvascular invasion (MVI) is an 
independent risk factor of early recurrence for HCC [3]. 
Therefore, preoperative prediction of MVI may be essen-
tial for treatment strategies [4].

As MVI is only reliably diagnosed by histopathology, 
it is challenging to achieve a non-invasive preoperative 
diagnosis. Traditional radiological characteristics, such 
as intratumoral arteries, have shown to be conducive 
to MVI diagnosis [5] but be inferior to radiomics signa-
tures [6–9]. However, previous radiomics studies were 
almost entirely based on static radiomics features, ignor-
ing the changes in features over time. Recently, Qu et al. 
proposed a feature extraction method called dynamic 
radiomics [10], which captured the feature change pat-
tern in the time dimension using three types of featuring 
methods, including integrated features, discrete features, 
and parameter fitting features. These dynamic features 
revealed the tumor heterogeneity, metabolic changes, 
and tumor angiogenesis information. The occurrence of 
MVI in patients with HCC is accompanied by changes 
in blood supply and metabolism in the tumor microen-
vironment [11–13]. Thus, it is reasonable to investigate 
whether dynamic radiomics on multi-phase dynamic 
contrast-enhanced (DCE) magnetic resonance imaging 
(MRI) may allow more effective MVI prediction.

In this study, we exploited the improved prediction 
performance based on multi-phase DCE-MRI using 
dynamic radiomics features for the preoperative MVI in 
HCC.

Materials and methods
Patients
This retrospective study was approved by the institu-
tional review board, and the requirement for informed 
consent was waived. All patients with HCC undergoing 
three-phase preoperative DCE-MRI between Septem-
ber 2019 and August 2022 were enrolled. The inclusion 
criteria were as follows: (1) pathologically confirmed 
HCC; (2) singular tumors, with or without satellite 
nodules—defined as lesions with a diameter ≤ 2 cm and 
a distance ≤ 2  cm from the main tumor; (3) DCE-MRI 
was performed within 1  month before surgery; (4) no 
prior cancer therapy, including transarterial chem-
oembolization and radiofrequency ablation; and (5) 
no macrovascular invasion shown on MRI. The exclu-
sion criteria were as follows: (1) special types of liver 
cancer such as double phenotype liver cancer; (2) poor 

MRI image quality; (3) recurrent HCC; and (4) concur-
rence of other malignancies. Figure 1 shows the patient 
recruitment process.

Laboratory examination and histopathology
Preoperative laboratory indexes (Table 1) included serum 
α-fetoprotein (AFP), carcinoembryonic antigen, carbo-
hydrate antigen 199, carbohydrate antigen 125, ferritin, 
hepatitis B virus, total bilirubin, direct bilirubin, albu-
min, and gamma-glutamyl transferase (GGT). The Barce-
lona Clinic Liver Cancer (BCLC) staging system was also 
incorporated.

HCC pathological specimens were collected following 
the 7-point baseline sampling protocol. Histopathologi-
cal characteristics, including MVI status and liver fibrosis 
grade based on the Scheuer scoring system, were double-
blindly determined by two pathologists with more than 
10 years of experience. MVI means the detection of can-
cer cell nests in the vascular lumen lined with endothe-
lial cells under a microscope, it is mainly observed in the 
branches of the portal vein.

DCE‑MRI protocol
All MR examinations were performed with a 3.0  T 
MRI system (Signa HDXT, GE Medical Systems, Mil-
waukee, WI, USA) with intravenous bolus injection of 
0.1  mmol/kg gadopentetate dimeglumine (Magnevist®, 
Bayer Schering Pharma, Berlin, Germany) in both insti-
tutions. Scans in a three-dimensional fast-spoiled gra-
dient-recalled echo sequence (liver acceleration volume 
acquisition, LAVA) at the arterial, portal vein, and equi-
librium phases were obtained with 20—35  s, 60—90  s, 
and 160—180 s delays, respectively. The scanning param-
eters for institution 1 were as follows: repetition time, 
3.2  ms; echo time, 1.5  ms; reversal angle, 10°; field of 
view, 380 × 304  mm; thickness, 2  mm. While the scan-
ning parameters for institution 2 were as follows: repeti-
tion time, 3.5 ms; echo time, 1.6 ms; reversal angle, 13°; 
field of view, 380 × 380 mm; thickness, 2 mm.

Qualitative radiographic descriptors
Image analysis was performed double-blindly by two 
radiologists with 10 and 15  years of experience in liver 
MRI diagnosis. The following eight imaging characteris-
tics were assessed: (a) tumor size; (b) tumor gross type—
nodular or non-nodular [14]; (c) rim enhancement in the 
arterial phase [15]; (d) arterial peritumoral parenchy-
mal enhancement [16]; (e) washout [17]; (f ) peritumoral 
hypointensity in the later phase [18]; (g) radiological cap-
sule [19]; and (h) intratumoral artery [5].
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Fig. 1  Flowchart of the study patients. DCE MRI dynamic contrast-enhanced MRI, HCC hepatocellular carcinoma, MVI microvascular invasion

Table 1  Clinicoradiological characteristics in training and validation cohorts

Abbreviations: AFP Serum α-fetoprotein, BCLC Barcelona Clinic Liver Cancer, GGT​ Gamma-glutamyltransferase, MVI Microvascular invasion

p value < 0.05: a significant difference between the training and validation cohorts, which was enrolled in the t-test, or chi-square test

Variables Training cohort
(n = 175)

Validation cohort (n = 75) P-value

MVI (negative/positive) 116/59 53/22 0.498

Age, mean ± SD, years 58.35 ± 11.03 58.25 ± 8.85 0.939

Sex (male/female) 154/21 61/14 0.164

BCLC (0/A) 15/160 11/64 0.148

Hepatitis B virus (present/absent) 153/22 65/10 0.869

Cirrhosis (present/absent) 137/38 54/21 0.283

Albumin (≤ 65/ > 65 g/L) 13/162 8/67 0.398

GGT (≤ 60/ > 60 U/L) 95/80 37/38 0.472

AFP (≤ 20/ > 20 ng/ml) 82/93 44/31 0.087

Tumor size,mean ± SD,cm 4.47 ± 2.40 4.34 ± 2.4 0.688

Gross type (nodular/ non-nodular) 43/132 23/52 0.316

Arterial peritumoral enhancement
(present/absent)

47/128 14/61 0.167

Arterial rim enhancement
(present/absent)

24/151 17/58 0.080

Wash out (present/absent) 143/32 62/13 0.857

Peritumoral hypointensity (present/absent) 31/144 13/62 0.942

Radiological capsule
(absence or incomplete/complete)

133/42 61/14 0.354

Internal arteries (present/absent) 81/94 28/47 0.191
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Tumor segmentation and static radiomics feature 
extraction
The whole tumor was manually depicted along with the 
lesion outline on each axial slice of each MRI phase by a 
radiologist with 10 years of experience ( reader 1) using 
ITK-SNAP (http://​www.​nitrc.​org/​proje​cts/​itk-​snap/). 
Additionally, to evaluate the intra-observer reproduc-
ibility and inter-observer reliability of feature extraction, 
images of 40 patients randomly selected from the train-
ing cohort after 3  months were resegmented indepen-
dently by two radiologist with 10 (reader 1) and 7 (reader 
2) years of experience, respectively. The intra-/inter-class 
correlation coefficients (ICCs) were used to test the con-
sistency between intra-observer and inter-observer ROIs. 
For images with different resolutions, all voxel sizes of 
all images were resampled with the same size of 1 × 1 × 1 
mm3. The image gray-scale values were normalized. The 
normalization procedure was based on the following 
mathematical formula:

where μ is the mean image density value, σ is the stand-
ard deviation of image density. The gray values of the 
images were normalized to 1–64, as recommended by 
Orlhac F et  al. [20]. Quantitative radiomics parameters 
were calculated using MATLAB software. A total of 484 
radiomics features were obtained and classified into three 
categories, including 7 intensity features, 53 texture fea-
tures, and 424 wavelet features.

Dynamic radiomics feature construction
Dynamic radiomics features were constructed based on 
the static features change of the same imaging examina-
tion at different phases or different imaging examina-
tions, which can be expressed as Eq. 2:

where Ф(.) transforms Rk to Rd. k is the phase number of 
the image, and d is the number of extractable dynamic 
features. The following three types of dynamic features 
were constructed to reflect the changes in static features 
in different phases:

1.	 Integrated features.

The integrated features mainly describe the pattern of 
feature changes with respect to time. Three types of inte-
grated features were studied, including the mean, vari-
ance, and coefficient of variation.

(1)x
′

= (x − µ)/σ

(2)φ(�(x(t1)),�(x(t2)), . . . ,�(x(tk)))

2.	 Discrete features.

The discrete features mainly describe the pattern of 
feature changes between two consecutive time points 
(defined as a segment) and involve two calculation meth-
ods: relative change rate (RCR) and relative average change 
rate (RACR), which are calculated as in Eqs. 3 and 4

In this study, there were four scanning time points, 
corresponding to three segments: plain–arterial phase, 
arterial–portal vein phase, and portal vein–equilibrium 
phase. Six types of discrete features were obtained.

3.	 Parameter fitting features.

Linear, quadratic, and exponential lines were fitted to 
the feature–time relationships. Parameters of the three 
fitting methods, with the maximum curvatures of the 
quadratic and exponential fittings, were recorded as 
dynamic features for the corresponding static feature.

The linear fitting equation is expressed as Eq. 5, and k 
and d were extracted as dynamic features.

The quadratic fitting equation is expressed as Eq. 6, and 
a, b, and c were extracted as dynamic features.

The curvature of the quadratic function is expressed as 
Eq. 7. The time (TmaxQK) corresponding to the maximum 
curvature (maxQK) and the curvature (QKmax_feature) cor-
responding to the maximum feature value were solved 
for and recorded as two dynamic features.

The exponential fitting equation is expressed as Eq. 8, 
and α and β were obtained as dynamic features.

The curvature of the exponential function is expressed 
as Eq.  9. The time (TmaxEK) corresponding to the maxi-
mum curvature (maxEK) and the curvature (EKmax_feature) 
corresponding to the maximum feature value were solved 
for and recorded as two dynamic features.

(3)
RCR(�(x(t))) = |�(x(tj))−�(x(ti))|/�(x(ti)), 1 ≤ j ≤ i ≤ k

(4)
RACR(�(x(t))) = |�(x(tj))−�(x(ti))|/�(x(ṫ)), 1 ≤ j ≤ i ≤ k

(5)feature = k × t + d

(6)feature = a× t2 + b× t + c

(7)QK = |2a|/(1+ (2a× t + b)2)
3/2

(8)feature = α × et + β

(9)EK = a× et / 1+ a× e2t
3/2

http://www.nitrc.org/projects/itk-snap/
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A total of 20 types of dynamic radiomics features were 
obtained. For each patient, the number of static radiom-
ics features was 484, and the number of dynamic radiom-
ics features was 20 × 484.

Radiomics signature construction
The variability between the two radiologists’ tumor con-
tours was estimated using ICCs. Stable features with 
ICCs > 0.8 were used for analysis. The segmentation data 
set of all images after the first segmentation by reader 1 
was adopted. All features were standardized into a nor-
mal distribution with z-scores to eliminate index dimen-
sion differences of the data. Model training procedure 
was fed into a repetitive (5 runs) fivefold cross- valida-
tion approach using the training set. For the construc-
tion of static radiomics (SR) signature, the final feature 
set of each ROI comprised a total of 1936 static radiom-
ics features, encompassing four phases. Firstly, F-test 
was used to screen for features associated with MVI, the 
least absolute shrinkage and selection operator (LASSO) 
was then used to screen the most informative image fea-
tures. Finally, logistic regression analysis was utilized to 
integrate the selected features to establish the SR signa-
ture. For the construction of dynamic radiomics (DR) 
signature, a total of 9680 dynamic radiomics features 
were obtained per patient. F-test and LASSO were used 
o screen the most informative image features. A logistic 
regression classifier was then used for the DR signature 
establishment. For the construction of dynamic-static 
radiomics ( DSR) signature, firstly, the optimal features 
selected for both the SR and DR signatures were com-
bined. Then, these features were screened once more 
using F-test and LASSO to derive the DSR signature 
through logistic regression. Classification accuracy, the 
area under the receiver operating characteristic (ROC) 
curve (AUC), sensitivity and specificity were used to 
evaluate the predictive performance of each radiomics 
signature. ROC curves and precision-recall curves were 

plotted to evaluate and compare the predictive perfor-
mance of each signature.

Statistical analysis
The Dr. Wise Multimodal Research Platform (https://​
keyan.​deepw​ise.​com, V1.6.2; Beijing Deepwise & League 
of PHD Technology Co., Ltd, Beijing, China) was used for 
radiomics feature selection and modeling. Clinical data 
were analyzed using descriptive statistics, numerical data 
were analyzed using the t-test, and categorical data were 
analyzed using the chi-square test. Statistical significance 
was assigned when two-sided p-values were < 0.05.

Results
Clinicoradiological characteristics
In this retrospective study, 175 patients in institution 1 
were used as the training set, including 59 MVI-positive 
and 116 MVI-negative patients. 75 patients in institu-
tion 2 were used as the external validation set, including 
22 MVI-positive and 53 MVI-negative patients. A total 
of 250 patients were included in the study (215 males 
and 35 females; average age: 58.34 ± 10.41  years; range: 
31–38  years). The clinical-radiological characteristics of 
the training and validation cohorts are listed in Table 1. 
There were no significant differences in clinical-radiolog-
ical characteristics between the two cohorts.

Performance of the static, dynamic, and dynamic–static 
radiomics signatures
For patients with HCC, the MVI prediction performance 
of the SR, DR, and DSR signatures based on three-phase 
DCE-MRI in the training and validation cohorts is 
shown in Table 2 and Figs. 2 and 3. In the three radiom-
ics signatures, the DSR signature performed the best. The 
AUCs of the SR, DR, and DSR signatures in the train-
ing set were 0.75, 0.751 and 0.805, respectively, while 
in the external validation set, the corresponding AUCs 
were 0.706, 0756 and 0.777. The DSR signature showed 

Table 2  Performance of the static, dynamic, and dynamic–static radiomics signatures

Abbreviations: SR Static radiomics, DR Dynamic radiomics, DSR Dynamic-static radiomics, AUC​ Area under the curve, CI Confidence interval

P1, AUC comparison between SR and DR; P2, AUC comparison between SR and DSR

Signatures Training set (n = 175) Validation set (n = 75)

AUC (95%CI) Accuracy Sensitivity Specificity AUC (95%CI) Accuracy Sensitivity Specificity

SR 0.750(0.677–0.822) 0.640 0.746 0.586 0.706
(0.579–0.833)

0.693 0.864 0.585

DR 0.751(0.678–0.825) 0.623 0.661 0.603 0.756
(0.641–0.870)

0.667 0.727 0.642

DSR 0.805(0.739–0.871) 0.714 0.780 0.681 0.777
(0.663–0.891)

0.720 0.773 0.698

P-value P1 = 0.962, P2 = 0.019 P1 = 0.302, P2 = 0.044

https://keyan.deepwise.com
https://keyan.deepwise.com
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significant improvement over the SR signature in pre-
dicting MVI status (training cohort, P = 0.019; validation 
cohort, P = 0.044). After external validation, the AUC 
value of the SR signature decreased from 0.750 to 0.706, 
while the AUC value of the DR signature did not show a 
decline (AUCs: 0.756 vs. 0.751).

The optimal contributing feature sets for the SR, 
DR, and DSR signatures in HCC are given in Figs.  4, 5 
and 6. The 7 most valuable static radiomics features were 
selected to construct the SR signature, including 5 fea-
tures of arterial phase, 1 features of portal venous phase, 
and 1 features of equilibrium phase (Fig. 4). The 10 most 
valuable features were used to construct the DR signa-
ture, including 4 integrated features, 2 discrete feature, 
and 4 parameter fitting features (Fig. 5). The 10 most sig-
nificant features were selected to construct the DSR sig-
nature based on three-phase DCE-MRI. These included 

6 static radiomics features and 4 dynamic radiomics fea-
tures (Fig. 6).

Discussion
In this study, we used a new dynamic radiomics method 
based on DCE-MR images for predicting MVI in HCC. 
The dynamic features described the changes of static fea-
tures in different phases and revealed more comprehen-
sive imaging information. The combined dynamic–static 
radiomics model showed an improvement in the predic-
tion of MVI in HCC, which helped with patient stratifica-
tion and treatment personalization.

Preoperative prediction of MVI in patients with HCC 
is of great significance for clinical treatment decisions. 
Recently, many studies have confirmed that radiomics 
could be an accurate and effective tool for MVI predic-
tion in HCC patients [21, 22], which holds promise for 
the non-invasive prediction and personalized treatment. 

Fig. 2  ROC curves of different models for predicting MVI in the training (A) and validation (B) cohort. DR dynamic radiomics, DSR dynamic-static 
radiomics, ROC receiver operating characteristic, MVI microvascular invasion, SR static radiomics

Fig. 3  Precision-recall curves of static (A), dynamic (B) and dynamic-static (C) radiomics signatures or predicting MVI in the validation cohort. MVI 
microvascular invasion
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Fig. 4  Plot of feature importance for the static radiomics signatures in HCC. F1: Static feature—Skewness—arterial phase, F2: Static feature—Small 
zone emphasis_wavelet.LLH—arterial phase, F3: Static feature—Long run low gray-level emphasis_wavelet.LLH—arterial phase, F4: Static feature—
Variance—equilibrium phase, F5: Static feature—Variance—arterial phase, F6: Static feature—Maximum probability_wavelet.LHL—portal venous 
phase, F7: Static feature—Long run emphasis_wavelet.LLH—arterial phase

Fig. 5  Plot of feature importance for the dynamic radiomics signatures in HCC. F1: Discrete feature_arterial–portal vein phase (RACR)—Contrast_
wavelet.LLL, F2: Exponential fitting feature α—Cluster prominence_wavelet.LLH, F3: Exponential fitting feature α—Correlation2_wavelet.LLH, 
F4: Quadratic fitting feature c—Correlation1_wavelet.HLL, F5: Discrete feature_plain–arterial phase (RACR)—Autocorrelation_wavelet.LLL, F6: 
Integrated feature_variance—Cluster prominence_wavelet.LLH, F7: Integrated feature_mean—Cluster prominence_wavelet.LLH, F8: Integrated 
feature_mean—Variance, F9: Quadratic fitting feature c—Long run low gray-level emphasis_wavelet.HLL, F10: Integrated feature_ coefficient 
of variation—Gray-level variance_wavelet.HLH
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However, previous radiomics studies have only focused 
on static radiomics and have ignored the change pattern 
of the static features over time. Recently, Qu et  al. pro-
posed a dynamic radiomics feature construction method 
to describe the change pattern of static features of the 
same or different imaging examinations over time [10]. 
The method was confirmed to be superior to static radi-
omics in the diagnosis and prognosis prediction of some 
cancers [23, 24]. The occurrence of MVI in patients with 
HCC is accompanied by changes in blood supply in the 
tumor microenvironment [12, 13]. DCE-MRI [25] scans 
at different phases after intravenous injection of para-
magnetic contrast agent to show the process of con-
trast agent perfusion and clearance, thus reflecting the 
microcirculation status of the tumor. DCE-MRI has been 
used in the preoperative MVI assessment of HCC [13]. 
Dynamic radiomics analysis of DCE-MRI images could 
identify the microscopic structure of lesions in a quan-
titative approach and capture more hidden information. 
To the best of our knowledge, our study is the first to use 
dynamic radiomics method based on DCE-MR images to 
predict MVI in HCC. In this study, the dynamic–static 
radiomics signature showed the best predictive power 
among the static, dynamic, and dynamic–static radiomics 
signatures. In terms of the reasons for this observation, 
compared to static radiomics, dynamic radiomics had 

the following advantages: (1) dynamic features reflected 
the changes in static features over time and revealed 
blood supply and metabolic information of the tumor, 
which led to better modeling; and (2) the dynamic fea-
tures contained the relative changes in the static features 
and reduced the effect of inter-image and inter-patient 
variability.

MVI was defined as a nest of malignant cells in ves-
sels only visible by microscopy [26]. The vascular lumen 
was mainly composed of portal vein branches adjacent 
to cancer. The presence of MVI theoretically leads to 
perfusion behavior changes within the lesion: block-
age of small branches of portal vein can decrease portal 
vein blood flow, and in return, lead to excessive arterial 
blood flow perfusion; MVI can cause vascular recon-
struction, reduce the adhesion of vascular endothelial 
cells, and thus reduce portal vein resistance [27]. These 
will entail changes in blood flow perfusion within the 
lesion. Zhang L et  al. [12] used perfusion parameters 
from conventional three-phase CT scans to help pre-
dict MVI preoperatively, showing that portal vein blood 
supply perfusion (PVP), arterial enhancement fraction 
(AEF), hepatic artery perfusion Index (HPI), and their 
related parameters had certain value in predicting MVI, 
and the combination of PVP, AEF and HPI had the 
highest diagnostic efficacy, with an AUC value of 0.741. 

Fig. 6  Plot of feature importance for the dynamic-static radiomics signatures in HCC. F1: Static feature—Skewness—arterial phase, F2: Static 
feature—Small zone emphasis_wavelet.LLH—arterial phase, F3: Discrete feature_arterial–portal vein phase (RACR)—Contrast_wavelet.LLL, F4: 
Static feature—Variance—arterial phase, F5: Static feature—Variance—equilibrium phase, F6: Integrated feature_mean—Variance, F7: Static 
feature—Maximum probability_wavelet.LHL—portal venous phase, F8: Quadratic fitting feature c—Long run low gray-level emphasis_wavelet.HLL, 
F9: Static feature—Long run emphasis_wavelet.LLH—arterial phase, F10: Integrated feature_ coefficient of variation—Gray-level variance_wavelet.
HLH
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In our study, the DSR signature exhibited better per-
formance, with an AUC value of 0.805 in the training 
set and 0.777 in the external validation set. Compared 
to perfusion parameters, dynamic radiomics analy-
sis could identify the microscopic structure of lesions 
in a quantitative approach and capture more hidden 
information.

In this study, as shown in Figs. 4, 5 and 6, the skew-
ness and variance adopted by the signatures are both 
histogram features, describing the statistical distribu-
tion characteristics of voxel intensity within the ROI. 
Among the texture features adopted by the signatures, 
the maximum probability, cluster prominence, cor-
relation 1, correlation 2, and autocorrelation belong 
to Gray-level co-occurrence matrix (GLCM), GLCM 
describes the distribution of voxel intensities along 
specific directions and distances within the ROI. Long 
run low gray-level emphasis, long run emphasis, and 
gray-level variance all belong to Gray-level run-length 
matrix (GLRLM), GLRLM describes the distribution 
patterns of runs with the same gray-level intensity 
arranged along specific directions within the ROI. Small 
zone emphasis belongs to Gray-level size zone matrix 
(GLSZM), GLSZM describes the distribution patterns 
of regions with the same gray-level intensity within the 
ROI. Contrast belongs to Neighborhood gray-tone dif-
ference matrix (NGTDM), NGTDM describes the dif-
ference in gray-levels between any central voxel and 
its surrounding neighborhood voxels within the ROI. 
Texture features based on wavelet transform belong 
to higher-order features, which extract details of the 
image by using different frequency filters along the x, y, 
and z axes in space. If HLH represents the image being 
filtered through the high-pass filter in the x-direction, 
the low-pass filter in the y-direction, and the high-pass 
filter in the z-direction, then the wavelet transform 
methods adopted by the three signatures include: LLH, 
LLL, LHL, HLL, and HLH.

This study has several limitations. First, there are vari-
ations in scanning parameters between the two institu-
tions. To address this issue, pre-processing operations 
were conducted on the images to mitigate the impact 
of these variations in image acquisition parameters. 
Although this is considered a limitation, it demonstrates 
the reproducibility and generalizability of our study. Sec-
ond, hepatobiliary contrast agents were not used. The 
imaging performance of hepatobiliary contrast agent is 
not ideal in the arterial phase and may lead to poor fea-
ture extraction [28, 29]. Besides, hepatobiliary contrast 
agent is not recommended for diagnosing HCC by the 
American Association for the Study of Liver Diseases 
(AASLD) [30]. Third, the method of extracting dynamic 
features still needs to be further optimized. However, 

despite these problems, we still believe that dynamic 
radiomics has great potential in disease diagnosis and 
prognosis assessment.

Conclusions
In summary, compared to static radiomics, dynamic 
radiomics approach can provide added value for MVI 
prediction in HCC. The application of the combined 
dynamic-static radiomics model to predict the MVI 
status of HCC has strong clinical significance and broad 
development prospects.
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