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Abstract
Objectives Differentiating chronic total occlusion (CTO) from subtotal occlusion (SO) is often difficult to make from 
coronary computed tomography angiography (CCTA). We developed a CCTA-based radiomics model to differentiate 
CTO and SO.

Methods A total of 66 patients with SO underwent CCTA before invasive angiography and were matched to 66 
patients with CTO. Comprehensive imaging analysis was conducted for all lesioned vessels, involving the automatic 
identification of the lumen within the occluded segment and extraction of 1,904 radiomics features. Radiomics 
models were then constructed to assess the discriminative value of these features in distinguishing CTO from SO. 
External validation of the model was performed using data from another medical center.

Results Compared to SO patients, CTO patients had more blunt stumps (internal: 53/66 (80.3%) vs. 39/66 (59.1%); 
external: 36/50 (72.0%) vs. 20/50 (40.0%), both p < 0.01), longer lesion length (internal: median length 15.4 mm[IQR: 
10.4-22.3 mm] vs. 8.7 mm[IQR: 4.9-12.6 mm]; external:11.8 mm[IQR: 6.1-23.4 mm] vs. 6.2 mm[IQR: 3.5-9.1 mm]; both 
p < 0.001). Sixteen unique radiomics features were identified after the least absolute shrinkage and selection operator 
regression. When added to the combined model including imaging features, radiomics features provided increased 
value for distinguishing CTO from SO (AUC, internal: 0.772 vs. 0.846; p = 0.023; external: 0.718 vs. 0.781, p = 0.146).

Conclusions The occluded segment vessels of CTO and SO have different radiomics signatures. The combined 
application of radiomics features and imaging features based on CCTA extraction can enhance diagnostic confidence.
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Introduction
Chronic total occlusion (CTO) is the presence of a com-
plete occlusion in the artery for a minimum of 3 months 
without any antegrade flow filling indicated by coronary 
angiography, which is prevalent among patients with 
ischemic heart disease [1, 2]. Subtotal occlusion (SO) is 
severe coronary artery stenosis with the positive flow in 
the distal segment without complete occlusion [3]. Dis-
tinguishing between CTO and SO before percutaneous 
coronary intervention (PCI) is clinically relevant because 
CTO lesions are more difficult to procedure and have 
a higher rate of late restenosis compared to non-CTO 
lesions. However, both conditions can present a com-
plete disruption of luminal blood flow on CCTA imaging, 
making discrimination between the two conditions diffi-
cult. Li et al. [4] and Choi et al. [3] proposed differentiat-
ing CTO and SO based on reverse attenuation gradient 
(RAG) sign, lesion length, blunt stump and collateral ves-
sels. However, this method largely depends on the type of 
CCTA scanner used and the radiologist’s experience [5–
7]. Thus, searching for simple and easily available indica-
tors for differentiating CTO from SO is required.

Radiomics is a relatively new approach in medicine that 
uses artificial intelligence-driven analytics to extract and 
convert digital images into mineable and high-dimen-
sional data for extracting quantitative image features in 
a high-throughput manner, followed by data analysis to 
support clinical decision-making [8]. Radiomics in car-
diovascular diseases has recently received much atten-
tion, e.g., for identifying features of high-risk plaques, 
as well as predicting myocardial ischemia and other 
coronary artery disease [9–12]. A new study shows that 
a radiomics model can predict the success of percutane-
ous coronary intervention [13]. However, there have been 
no studies on the preoperative application of radiomics 
to differentiate CTO from non-CTO.

The aim of this study was to develop a diagnostic model 
to differentiate CTO and SO using non-invasive CCTA 
imaging-based radiomics.

Methods
Study population
The study was approved by local ethics committee (Eth-
ics Number: 2021-KY-0043-002). The ethics committee 
waived the need for informed consent.

For the internal sets, we retrospectively included 618 
patients with CTO or SO who underwent both CCTA 
and invasive coronary angiography (ICA) from January 
2020 to December 2021. The exclusion criteria were as 
follows: (a) patients who underwent bypass surgery or 
percutaneous coronary intervention (PCI) for occluded 
arteries; (b) more than 2 weeks between CCTA examina-
tion and ICA examination; (c) the presence of multiple 
occlusive lesions; (d) too much calcification to accurately 

assess the lumen; (e) poor image quality. A case-control 
study was conducted using 1:1 propensity score matching 
(PSM) to reduce case-control selection bias. The 1:1 PSM 
used a nearest neighbor matching algorithm for age, gen-
der, BMI, risk factors (hypertension, diabetes, smoking) 
to reduce the bias in selecting the case controls [14–17].

For the external validation set, we retrospectively 
recruited 50 patients with CTO and SO each who under-
went both ICA and CCTA between January 2017 and 
October 2022 from Shanghai General Hospital of Shang-
hai Jiao Tong University with the same eligibility criteria 
described previously (Fig. 1).

ICA and percutaneous coronary intervention procedures
ICA was performed with a radial or femoral percuta-
neous approach, and at least two orthogonal projec-
tions were obtained for each major coronary artery. A 
completely disrupted lumen with no collateral flow via 
the arterial lesion [Thrombolysis in Myocardial Infarc-
tion (TIMI) flow grade 0] was defined as CTO [18]. SO 
defined as high degree of stenosis with detectable ante-
grade flow [4]. ICA findings were used as a reference 
standard to validate CCTA results. Procedure success 
was defined as the successful opening of total occlusion 
and restoration of flow (25% residual stenosis and TIMI 
grade 3 flow) after stent implantation [19]. PCI failure 
was defined as: (a) failed to cross guidewire, balloon, or 
stent through occlusion; (b) occurrence of severe com-
plications (including perforation, pericardial tamponade, 
or hemodynamic instability) that needed emergent inter-
vention during the procedure; (c) PCI operator believed 
that prolongation of the procedure would not benefit the 
patient [20].

CCTA acquisition
For the internal and external test set, CCTA was per-
formed with three CT scanners [a second-generation 
dual-source CT scanner (SOMATOM Definition Flash; 
Siemens Healthineers), a third-generation dual-source 
CT scanner (SOMATOM Force; Siemens Healthineers) 
and a 256-row wide-detector CT scanner (Revolution 
HD; GE Healthcare)]. Retrospective ECG-gated CTA was 
performed in a second-generation dual-source CT, and 
prospective ECG-triggered acquisition was performed in 
a third-generation dual-source CT, both of them apply-
ing automated tube voltage and current modulation. For 
wide-detector CT scanner, prospective ECG-triggered 
acquisition was performed within one heartbeat, and 
application of automated tube voltage and current modu-
lation. Details of CCTA protocols are presented in Sup-
plemental material.
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CCTA image analysis
CCTA images were imported in the DICOM format into 
the GE advantage workstation volume share 7 for further 
analysis. Several CT features which were reported to be 
indicators for differentiating CTO and SO in a previ-
ous study were selected for model development [3]. The 
lesion length was measured on the planar curve refor-
mation (CPR) images for identifying segments devoid 
of luminal enhancement. The morphology of the entry 
point on the angiogram was classified based on the shape 
of the occluded segment and identified as “tapered” if the 
occluded segment ended in a funnel shape, otherwise as 
“obtuse” [21]. We visualized collateral vessels on the CPR 

images and best-projected three-dimensional maximum 
intensity projection (MIP) images. The CPR images of 
intact vascular connections between donor and recipi-
ent coronary arteries were used for identifying collateral 
vessels [3]. Transluminal attenuation gradient (TAG)was 
determined by the change in Hounsfield units per 10 mm 
of coronary artery length. TAG (HU/10 mm) was defined 
by the linear regression coefficient between intra-luminal 
radiological attenuation and the vessel length from dis-
tal to the occlusion [3]. Bending > 45° refers to the bend-
ing of the occluded segment at an angle greater than 45° 
[22]. Proximal and distal side branches were defined as 

Fig. 1 Flow chart of the study design
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any visible side branch within 3  mm proximal and dis-
tal to the occlusion [23]. The ratio of the diameter of the 
occluded vessel to the adjacent normal vessel > 1 repre-
sents positive remodeling [24]. Two radiologists (10 and 
5 years of cardiovascular imaging experience, respec-
tively), who were blinded to the ICA findings, indepen-
dently assessed all CT features. And disagreement was 
resolved by consensus. Inter-observer agreement for 
analysis of imaging features was assessed using intraclass 
correlation co-efficient. Quantitative plaque measure-
ments of the occluded segment vessels were performed 
on uAI Discover-Coronary (United Imaging Intelligence, 
Co., Ltd.), and plaque volume and plaque component 
load were automatically analyzed according to specific 
thresholds, including calcified plaques (> 350 HU), non-
calcified plaques (31 to 350 HU), and low-attenuation 
plaques (-30 to 30HU).

Image segmentation and radiomics feature extraction
The construction of the automatic segmentation frame-
work and the extraction of radiomics features were 
performed on Research PortalV1.1 (United Imag-
ing Intelligence, Co., Ltd.). It was integrated with 
PyRadiomics (https://pyradiomics.readthedocs.io/en/lat-
est). The exact definition of the coronary artery tree was 
set as a basis for segmenting the occluded segment ves-
sels. For the segmentation of CCTA images of coronary 

vessel trees, the initial segmentation was performed 
using the “RB-Net” network. Subsequently, to improve 
the completeness of the vessel segmentation, the ves-
sel tracking technique was used to connect the broken 
vessels segmented in the previous step. Additionally, for 
finer segmentation of the coronary tree, key topologi-
cal information of the coronary vascular tree was con-
structed by combining a convolutional graph network 
with a point cloud network technique [25]. Finally, a 
bidirectional recurrent convolutional neural network 
was used to detect the lesion areas of the patients. The 
region-of-interest (ROI) of the occluded segment was 
identified and examined by two radiologists. Image pre-
processing like wavelet and Laplacian Sharpening filter 
were performed on all ROIs. Features are divided into 
7 groups. Shape features are extracted based on ROI in 
the original image. Texture features, grayscale statistical 
features, etc. are extracted from the original image and 
the filtered image. Finally, 1904 radiomics features were 
extracted. Detailed categories of features are provided in 
Supplemental material. The workflow for lumen segmen-
tation and radiomics analysis is shown in Fig. 2.

Model development and validation
The Z-Score method was used for standardization. First, 
we performed an ANOVA to screen the radiomics fea-
tures. Next, LASSO regression analysis was implemented 

Fig. 2 Flow chart showing the process for constructing the prediction models. The red box in the first row represents the imaging model; the blue box 
in the second row represents the radiomics model; the green box in the last column shows the comparison between the combined model and the other 
two models
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for filtering irrelevant and redundant features. After that, 
we developed a logistic regression model using the most 
diagnostic radiomics features (Model 1). Finally, patients 
were randomly divided in a ratio of 8:2 into the training 
and test sets. We performed 5-fold cross-validation to 
demonstrate good agreement among these data (Supple-
mental Appendix). Next, quantitative and qualitative 
features obtained from CCTA images were compared to 
filter out statistical factors and construct imaging mod-
els (Model 2). Finally, we merged the radiomics model 
(Model 1) and the imaging features (Model 2) to con-
struct the combined model (Model 3). The features were 
ranked according to the coefficient in establishing com-
bined model (Fig.  3). We evaluated the performance of 
the radiomics-based ML model in an independent study 
sample as external validation. The CCTA imaging proto-
col and segmentation of occluded segmental vessels fol-
lowed the same procedure as described above.

Statistical analysis
We analyzed the data using “R 4.2.2” software. Fisher’s 
exact or chi-squared tests were used to compare cat-
egorical data. The normality tests were performed on 
the count data. The independent samples t-test was per-
formed on data conforming to a normal distribution, and 
the Mann-Whitney U test was performed on data that 
did not follow the normal distribution. P < 0.05 was con-
sidered statistically significant. The receiver operating 
characteristic (ROC) curve was used to analyze the abil-
ity of the imaging, radiomics, and combined models to 
differentiate between CTO and SO. The DeLong test was 
used to compare the area under the ROC curve (AUC) 

values [26]. We plotted the calibration curves to deter-
mine the agreement between the observed and predicted 
results of the three models. Next, we performed the 
“decision curve analysis (DCA)” to determine the appli-
cation of the three models in clinical settings by calcu-
lating the net benefit at different threshold probabilities 
[27].

Results
Baseline patient characteristics
The basic characteristics of the study population are 
shown in Table  1, revealing no statistically significant 

Table 1 Baseline characteristics of the study population
SO (n = 66) CTO (n = 66) P Value

Clinical characteristics
Male 41 (62.1) 50 (75.8) 0.090
Age, y 65 (55–71) 63 (58–73) 0.238
Body mass index, 
kg/m2

24.37 ± 3.45 23.98 ± 3.00 0.483

Hypertension 38 (57.6) 42 (63.6) 0.476
Diabetes 26 (39.4) 22 (33.3) 0.469
Smoking 20 (30.3) 28 (42.4) 0.148
MI 14 (21.2) 20 (30.3) 0.232
Unstable angina 10 (15.2) 16 (24.2) 0.189
Stable angina 14 (21.2) 16 (24.2) 0.678
Silent ischemia 9 (13.6) 10 (15.2) 0.804
PCI
PCI attempted 54 (81.8) 44 (66.7) 0.047
Successful PCI 51 (94.4) 34 (77.3) 0.013
Procedural time (min) 5.00 (2.00-11.50) 24.0 (7.50–39.50) < 0.001
Values are mean ± SD, median (25th and 75th percentile) or n (%)

MI = myocardial infarction; PCI = percutaneous coronary intervention

Fig. 3 Features coefficient in establishing a combined model
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difference in basic characteristics between the two 
groups. In addition, we compared the differences in the 
outcomes of PCI between the two groups. Among 66 
CTO patients, 17 received no treatment, 5 underwent 
coronary artery bypass grafting, and 34 PCI was success-
ful (31 with antegrade and 3 retrograde method). Among 
SO patients, 55 received treatment, 1 coronary artery 
bypass graft was performed, and 51 PCI was successful 
(all antegrade). PCI was attempted less frequently (66.7% 
vs. 81.8%), with a much lower procedural success rate 
(77.3% vs. 94.4%) in CTO compared with SO (p < 0.05). 
The procedural time was 24.00  min (IQR [7.50–39.50]) 
in CTO patients and 5.00 min (IQR [2.00-11.50]) in SO 
patients, with the longer time required for opening in 
CTO patients (p < 0.001). The basic characteristics of the 
study population in the training set, test set and external 
validation set are shown in Supplementary Table 1.

CCTA image analysis
Qualitative parameters
The presence of blunt stump was significantly higher in 
CTO patients than in the SO group (80.3% vs. 59.1%, 
p = 0.008), but there was no significant difference in the 
appearance of collateral vessels, proximal branch, distal 
branch, bending > 45°and positive remodeling between 
the two groups (40.9% vs. 50.0%, 34.8% vs. 47.0%, 
24.2% vs. 28.8%, 21.2% vs. 16.7% and 33.3% vs. 24.2%, 
all p > 0.05) (Table  2). In the external validation group, 
the proportion of blunt stumps was significantly higher 
in CTO patients than in SO patients (72.0% vs. 40.0%, 

p < 0.01). There was no significant difference in collateral 
vessels, proximal branch, distal branch, bending > 45°and 
positive remodeling between the two groups (52.0% vs. 
40.0%, 42.0% vs. 28.0%, 20.0% vs. 16.0%, 32.0% vs. 24.0% 
and 48.0% vs. 30.0%, all p > 0.05).

Quantitative parameters
In both internal and external study samples, lesion 
lengths were significantly different between the two 
groups, with CTO patients having longer lesion lengths 
than SO patients (internal:15.35 mm [IQR 10.43 to 22.33] 
vs. 8.65  mm [4.88 to 12.63]; external:11.75  mm [6.13 to 
23.43] vs. 6.20  mm [3.48 to 9.13], both p < 0.001). TAG 
was not obviously different between both groups (inter-
nal: -0.12[-2.27 to 0.10] vs. -1.33[-2.56 to -1.33]; external: 
-1.14[-2.21 to 0.14] vs. -1.79[-2.97 to -0.82], both p > 0.05). 
There was no significant difference in plaque volume 
and plaque component load between the two groups (all 
p > 0.05). The CCTA features of the training set, test set 
and external validation set are shown in Supplementary 
Table 2. The inter-observer agreement was > 0.75 for all 
measured parameters (Supplementary Table 3).

Radiomics analysis
We performed an ANOVA to screen the radiomics fea-
tures, and a total of 55 significantly different features 
(p < 0.05) were screened. Using LASSO regression anal-
ysis, 16 radiomics features with significant diagnostic 
ability were selected. The 16 features include the six first-
order features and ten texture features. Distinguishing 

Table 2 CCTA features of the study population
SO (n = 66) CTO (n = 66) P value

Lesion location
 LAD 28 (42.4) 19 (28.8) 0.102
 LCX 8 (12.1) 11 (16.7) 0.457
 RCA 30 (45.5) 36 (54.5) 0.296
Lesion length, mm 8.65 (4.88–12.63) 15.35(10.43–22.33) < 0.001
TAG (HU/10 mm) -1.33 (-2.56 to -0.13) -0.12 (-2.27 to 0.10) 0.076
Blunt stump 39 (59.1) 53 (80.3) 0.008
Collateral vessel 33 (50.0) 27 (40.9) 0.294
Proximal branch 31 (47.0) 23 (34.8) 0.157
Distal branch 19 (28.8) 16 (24.2) 0.554
Bending > 45° 11 (16.7) 14 (21.2) 0.505
Positive remodeling 16 (24.2) 22 (33.3) 0.249
Total plaque volume (mm3) 263.23 (103.00–428.23) 344.15 (185.41–551.46) 0.108
Calcified plaque volume (mm3) 54.68 (12.20–196.95) 87.42 (42.30–257.62) 0.188
Non-calcified plaque volume(mm3) 169.00 (84.55–266.22) 228.60 (113.93–340.85) 0.063
Low-attenuation plaque volume(mm3) 30.80 (7.18–69.94) 49.61 (17.41–88.06) 0.057
Calcified plaque load (%) 32.86 (11.16–52.88) 31.24 (16.58–51.24) 0.931
Non-calcified plaque load (%) 67.14 (47.12–88.84) 68.76 (48.76–82.78) 0.912
Low-attenuation plaque load (%) 10.49 (3.94–22.69) 13.27 (7.43–22.28) 0.251
Values are median (25th and 75th percentile) or n (%)

Abbreviations CTO = chronic total occlusion; SO = subtotal occlusion; CCTA = coronary computed tomography angiography
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between CTO and SO was challenging when the length 
and morphology of the occluded vessels were similar 
(Fig. 4).

Performance of model
The AUC values of Model 1 in the training, test, and 
external validation sets were 0.795 (95% CI: 0.705–
0.867), 0.775 (95% CI: 0.574–0.912) and 0.694 (95% CI: 
0.594–0.783), respectively. The AUC values of Model 2 
in all three sets were 0.771 (95% CI: 0.679–0.848), 0.769 
(95% CI: 0.568–0.908), and 0.718 (95% CI: 0.619–0.803). 
Model 3 demonstrated the best accuracy in predicting 
CTO or SO, with the AUC values of 0.849 for the training 
set (95% CI, 0.766–0.911), 0.830 (95% CI, 0.636–0.946) 
for the test set, and 0.781 (95% CI, 0.687–0.858) for the 
external validation set (Table 3, Supplementary Fig. S1). 
The decision curves demonstrate the clinical usefulness 
of the prediction models by comparing the net benefit 
at different threshold probabilities in the training and 
validation sets. (Supplementary Fig. S1). The calibration 
curves (Supplementary Fig.  S2) revealed that all predic-
tion models showed a good fit in all three sets (P > 0.05 in 
the Hosmer-Lemeshow test).

Discussion
The key findings of this study are: (1) the length and blunt 
stump were the most sensitive metrics imaging met-
rics to discriminate CTO and SO; (2) the lumen of the 
occluded segment of CTO showed different radiomics 
features compared to SO; (3) radiomics can provide sup-
port when the length and shape of the occluded segment 
are essentially identical.

Differential diagnosis of CTO and SO is clinically 
important. CTO predicts a more difficult procedure, 
lower success rate, higher complication rate, higher radi-
ation exposure and longer procedure time for PCI than 
non-CTO [2, 28–30]. Identification of CTO and SO is 
probably useful in estimating the difficulty of the proce-
dure or deciding on a revascularization strategy. CCTA 
is a non-invasive method of assessing coronary artery 
disease and is recommended as a valuable preoperative 
imaging tool for CTO [31].The ability of CCTA to detect 
CTO may guide more specialized personnel device selec-
tion prior to the procedure. Thus, acquiring CCTA image 
information allows cardiologists to focus on selecting 
and performing the required procedures without wast-
ing time on diagnosis [5]. Currently, various CCTA-based 
clinical evaluation indexes, such as the lesion length, cal-
cification area, presence of blunt stump, and intra-lumi-
nal attenuation gradient, are used to differentiate CTO 

Fig. 4 CCTA and DSA diagrams for patients with CTO and SO. (A, B) Maximum intensity projection (MIP) and curve planar reformation (CPR) images of 
patients with CTO;(C, D) MIP and CPR images of patients with SO;(E, F) Digital subtraction angiography images of a patient with CTO. E shows no positive 
blood flow far from the occluded segment (yellow arrow); F shows the LAD distal-RCA vessel visualization with LAD-RCA reverse flow (yellow arrow). (G) 
Digital subtraction angiography image of a patient with SO, wherein positive flow was observed far from the stenotic segment (yellow arrow)
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and SO [3, 4]. However, the acceptable threshold values 
for the lesion length and TAG are still lacking. Because 
the non-wide-body detector CT scanner uses a prospec-
tive scanning method, differences in the contrast con-
centration occur in different axial images, which might 
affect the accuracy of the TAG values [32]. Additionally, 
differences in the clinician approach increase the diffi-
culties in assessing TAG and collateral vessels. This also 
explains why only lesion length and blunt stump resulted 
to be independent predictors in our study, from which 
the CCTA imaging model is constructed.

Novel image and data analytic techniques such 
as radiomics, machine learning (ML), and deep 
learning(DL) may decrease inter-reader variations, 
increase the amount of quantitative information, and 
improve diagnostic and prognostic accuracy while 
reducing subjectivity and biases [33]. CCTA provides 
a platform for linking radiomics to clinical medicine, 
as it is widely used to diagnose coronary-related dis-
eases because of its low acquisition and post-processing 
requirements and a large amount of easily available data 
[34]. Radiomics can provide information that cannot be 
perceived quantitatively by human eyes, enhancing our 
understanding of diseases and ultimately aiding clinical 
decision-making. The advent of radiomics allows inexpe-
rienced clinicians to quickly identify differences that are 
difficult to distinguish visually. This technique has several 
benefits, like quick and easy to perform, and requires no 
additional trauma, exposure to radiation, scanning time, 
or the contrast agent [35]. Therefore, our study assists in 
the manual differentiation of CTO and SO for diagnosis 

using radiological features, feature selection and con-
struction of predictive models based on machine learning 
methods.

Recent reports have shown that deep learning mod-
els can significantly reduce the post-processing time for 
CTO quantification on CCTA images compared to tra-
ditional manual reconstruction. The occlusion features 
based on the deep learning model have excellent correla-
tion and consistency compared to the anatomical assess-
ment of manual reconstruction [25]. Previous radiomics 
studies on coronary artery disease have focused on the 
plaque component, peri-coronary adipose tissue or myo-
cardium of the coronary arteries; however, our study first 
reported using radiomics to a more precise coronary 
lumen, which may enable the discovery of pathological 
heterogeneity between CTO and SO. CTO lesions are 
thrombotic occlusions with fibrous tissues rich in col-
lagen or calcification of the lumen of the occluded seg-
ment [36, 37], whilst SO as an incomplete occlusion. 
Differentiating CTO and SO based on subjective assess-
ment of CCTA images without considering the complex 
spatial relationships between voxels may result in the loss 
of important information. 10 of the 16 features extracted 
in this study were texture features containing voxels, 
and the highest coefficient value for model importance 
was also for texture features. It may potentially reflect 
differences in pathology, which side-steps the ability of 
radiomics to discriminate CTO from SO. wavelet_gldm_
wavelet-LHH-DependenceVariance and shotnoise_gldm_
LargeDependenceHighGrayLevelEmphasis are the two 
texture features with the highest model coefficient values 

Table 3 Comparison of the diagnostic performances among models
cohort Model 1 Model 2 Model 3
Training set AUC (95% CI) 0.795(0.705–0.867) 0.771(0.679–0.848) 0.849(0.766–0.911)

SPE (95% CI) 0.604(0.460–0.733) 0.698(0.555–0.813) 0.849(0.719–0.928)
SEN (95% CI) 0.865(0.736–0.940) 0.750(0.608–0.855) 0.673(0.528–0.793)
ACC (95% CI) 0.733(0.730–0.737) 0.724(0.720–0.728) 0.762(0.759–0.765)
PPV (95% CI) 0.682(0.554–0.788) 0.709(0.569–0.820) 0.814(0.661–0.911)
NPV (95% CI) 0.821(0.659–0.919). 0.740(0.594–0.849) 0.726(0.596–0.828)
cut-off 0.435 0.454 0.556

Test set AUC (95% CI) 0.775(0.574–0.912) 0.769(0.568–0.908) 0.830(0.636–0.946)
SPE (95% CI) 0.692(0.389–0.896) 0.846(0.537–0.973) 0.846(0.537–0.973)
SEN (95% CI) 0.929(0.642–0.996) 0.643(0.356–0.860) 0.786(0.488–0.943)
ACC (95% CI) 0.815(0.804–0.826) 0.741(0.727–0.755) 0.815(0.804–0.826)
PPV (95% CI) 0.765(0.498–0.922) 0.818(0.478–0.968) 0.846(0.537–0.973)
NPV (95% CI) 0.900(0.541–0.995) 0.688(0.415–0.879) 0.786(0.488–0.943)

External validation set AUC (95% CI) 0.694(0.594–0.783) 0.718(0.619–0.803) 0.781(0.687–0.858)
SPE (95% CI) 0.600(0.452–0.733) 0.800(0.659–0.895) 0.700(0.552–0.817)
SEN (95% CI) 0.740(0.594–0.850) 0.600(0.452–0.733) 0.780(0.637–0.880)
ACC (95% CI) 0.670(0.666–0.674) 0.700(0.696–0.704) 0.740(0.736–0.744)
PPV (95% CI) 0.649(0.511–0.768) 0.750(0.585–0.868) 0.722(0.581–0.831)
NPV (95% CI) 0.698(0.537–0.823) 0.667(0.532–0.780) 0.761(0.609–0.869)

AUC = area under curve; 95% CI = 95% confidence interval; SPE = specificity; SEN = sensitivity; ACC = accuracy; PPV = positive predictive value; NPV = negative predictive 
value
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which respond to the dependence of the gray values in 
the image. Higher values of the above features indicate 
that the occluded segment of the vessel has a large 
dependence of higher gray values, which may be related 
to the fact that the CTO is enriched with more fibrocalci-
fied tissue [29, 38].

In this study, we constructed a combined model based 
on radiomics data and CCTA imaging features of the 
lumen of the occluded coronary segment. The perfor-
mance of the combined model in diagnosing CTO from 
SO was better compared to the imaging and radiomics 
models, indicating that the former could help overcome 
the differences in the diagnostic ability of different scan-
ning modalities and inexperienced doctors, resulting in 
improved diagnostic accuracy. Therefore, the radiomics 
features based on extracting CCTA images can accurately 
and reliably distinguish between CTO and SO before PCI 
and aid clinical decision-making.

The key limitations of this study should be consid-
ered. First, this was a retrospective study with small 
sample size. Second, the perivascular information of the 
occluded segment was not incorporated because the out-
lined ROI was located in the lumen, which could result 
in the loss of some valuable information. Future stud-
ies with large sample sizes and prospective designs are 
needed to validate the model generalizability.

In conclusion, this study develops a diagnostic model 
to differentiate CTO and SO using non-invasive CCTA 
imaging-based radiomics that can provide support when 
the CCTA metrics are similar. Our study would help 
interventional cardiologists predict the ease of percuta-
neous coronary intervention. Future studies should assess 
the value of the radiomics features for guiding treatment.

Nonstandard Abbreviations and Acronyms
CCTA  Coronary Computed Tomography Angiography
TAG  Transluminal Attenuation Gradient
CTO  Chronic Total Occlusion
SO  Subtotal Occlusion
ICA  Invasive Coronary Angiography
PCI  Percutaneous Coronary Intervention
LASSO  Least Absolute Shrinkage and Selection Operator
ANOVA  Analysis of Variance
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