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Abstract
Objective Early diagnosis of osteoporosis is crucial to prevent osteoporotic vertebral fracture and complications of 
spine surgery. We aimed to conduct a hybrid transformer convolutional neural network (HTCNN)-based radiomics 
model for osteoporosis screening in routine CT.

Methods To investigate the HTCNN algorithm for vertebrae and trabecular segmentation, 92 training subjects and 
45 test subjects were employed. Furthermore, we included 283 vertebral bodies and randomly divided them into 
the training cohort (n = 204) and test cohort (n = 79) for radiomics analysis. Area receiver operating characteristic 
curves (AUCs) and decision curve analysis (DCA) were applied to compare the performance and clinical value 
between radiomics models and Hounsfield Unit (HU) values to detect dual-energy X-ray absorptiometry (DXA) based 
osteoporosis.

Results HTCNN algorithm revealed high precision for the segmentation of the vertebral body and trabecular 
compartment. In test sets, the mean dice scores reach 0.968 and 0.961. 12 features from the trabecular compartment 
and 15 features from the entire vertebral body were used to calculate the radiomics score (rad score). Compared with 
HU values and trabecular rad-score, the vertebrae rad-score suggested the best efficacy for osteoporosis and non-
osteoporosis discrimination (training group: AUC = 0.95, 95%CI 0.91–0.99; test group: AUC = 0.97, 95%CI 0.93–1.00) and 
the differences were significant in test group according to the DeLong test (p < 0.05).

Conclusions This retrospective study demonstrated the superiority of the HTCNN-based vertebrae radiomics model 
for osteoporosis discrimination in routine CT.
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Introduction
Osteoporosis is a common metabolic bone disease char-
acterized by a progressive bone mass and strength reduc-
tion, which predisposes to an increased risk of fractures 
[1]. Over 32.0% of the population older than 65 years old 
suffer from the disease worldwide. Moreover, vertebra 
osteoporosis has been treated as a key factor for inter-
nal fixation system loosening and failure of spine fusion 
[2, 3]. Thus, better knowledge of bone mineral density 
(BMD) in vertebrae is essential to identify high-risk pop-
ulations of fractures and reduce surgical complications.

Due to extra radiation exposure and medical costs, 
dual-energy X-ray absorptiometry (DXA) examinations 
were not routinely performed in patients with suspected 
osteoporosis before spine surgery in a survey [4]. Previ-
ous studies have suggested that the average Hounsfield 
unit (HU) values in vertebrae are significantly correlated 
with the T score obtained from DXA [5], which also 
can be utilized to detect osteoporosis and predict pedi-
cle screw loosening [6]. However, HU values can vary 
depending on the CT protocol, and the measurement of 
HU in routine CT is subject to user-dependent defini-
tions of regions of interest (ROIs) that may not capture 
all radiologic information from vertebral bodies [7].

Radiomics, quantitative features capturing the non-
vision image information, have been applied for disease 
diagnosis and prediction [8]. Accumulating evidence has 
confirmed the potential classification performance for 
bone diseases [9, 10]. Recent studies suggested the excel-
lent performance of radiomics models for osteoporosis 
screening and fracture prediction [11, 12].

With the rapid development of deep learning algo-
rithms, medical image recognition has witnessed a surge 
of interest in the application of convolutional neural net-
works [13]. In contrast, the transformer network, which 
features a distinct architecture from convolution, is 
emerging as a promising technology for analyzing medi-
cal images, as it can enable CNN to capture long-distance 
relationships from images [14, 15]. The transformer net-
work learns the relationships among features, leading 
to a more versatile model that is not entirely reliant on 
the training data. Moreover, transformers have exhibited 
high accuracy when employed in various medical tasks 
[16, 17]. Thus, we developed a hybrid architecture that 
combines deep learning and transformer algorithms for 
automated vertebral body and trabecular compartment 
segmentation.

In this study, we proposed a transformer-enhanced 
deep learning framework to automatically acquire fea-
tures from the entire lumbar vertebral body and the can-
cellous compartment to develop radiomics models for 
osteoporosis screening in routine CT.

Materials and methods
Study patient population
Between January 2021 and August 2022, we retrospec-
tively searched consecutive patients undergoing multi-
detector CT (MDCT) scanners from the institutional 
image database. This retrospective study was approved 
by the Ethics Committee of Shengjing Hospital of China 
Medical University, and the need for informed consent 
was waived. The inclusion criteria were (1) patients with 
ages older than 18; (2) available lumbar spine CT data. 
The exclusion criteria were as follows: (1) vertebral frac-
ture and internal fixation history; (2) bone tumor; (3) 
vertebrae with severe degenerative changes; (4) hemato-
logical disorders and autoimmune diseases. Among them, 
patients with DEXA results and lumbar spine CT images 
within seven days were selected for radiomics analysis. 
The selection pipeline is presented in Fig.  1. Following 
the WHO criteria [18], lumbar vertebrae (L1-L4) were 
classified into DXA-based categories: non-osteoporosis 
with a T-score > − 2.5; osteoporosis with a T-score ≤ − 2.5. 
Vertebrae were divided into train and internal validation 
cohorts using a stratified random sampling algorithm at 
a 7:3 ratio.

CT image acquisition
The images were obtained from six different MDCT 
scanners in our hospital with a peak tube voltage of 
120 kV (Ingenuity Core 128 and iCT 256, Philips Systems; 
Somatom Definition and Sensation 64, Siemens Systems). 
Images were retrieved from the Picture Archiving and 
Communication Systems (PACS) in the DICOM format 
and reconstructed at a slice thickness of 1 to 1.5  mm. 
The DEXA was performed in the lumbar spine and the 
T-score of each vertebra (L1-4) was obtained from the 
report.

Image annotation and hybrid transformer convolutional 
neural network training
The entire vertebral body and cancellous compartment of 
the vertebral body were segmented manually slice by slice 
in ITK-SNAP software (version 3.6.0, www.itksnap.org). 
Two residents, who have been specifically instructed 
and trained, conducted the initial manual segmentation. 
To investigate the intraclass variability, another resident 
(board-certified radiologist) performed duplicated anno-
tation in randomly selected images, who was blind to the 
previous annotation results. We utilized the Inter Corre-
lation Coefficient between two experienced residents to 
assess the repeatability of segmentation. We proposed a 
novel deep learning algorithm, ST-Unet, an architecture 
with efficient integration of Swin-Transformer and 3D 
U-Net algorithm. Details on ST-Unet training are avail-
able in Supplementary Materials. The overall segmen-
tation performance is quantitatively evaluated by two 

http://www.itksnap.org
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metrics, the dice similarity coefficient (DSC) and the 
average surface distance (ASD).

HU measurement and radiomics features extraction
HU values were manually measured from the region of 
anterior cancellous compartments of vertebral bod-
ies (L1-4) in PACS [19]. Additionally, we automatically 
extracted the average HU (HTCNN_HU) from the seg-
mentation masks of the cancellous region. Radiomics 
features were extracted from two masks in L1-4 using 
the PyRadiomics package [20] in Python (version 3.7) 
after z-score normalization and resampling of images, 
consisting of six classes: first-order statistics, gray-level 
co-occurrence matrix (GLCM), gray-level run length 
matrix (GLRLM), neighboring gray-tone difference 
matrix (NGTDM), gray-level size zone matrix (GLSZM) 
and gray-level dependence matrix (GLDM). In addition, 
seven transform filters including wavelet and Log were 
applied for feature extraction. The muti-step workflow is 
present in Fig. 2.

Radiomics signature establishment and evaluation
First, we normalized the radiomics features and removed 
zero variation features by the“preProcess” package in R. 
Second, highly correlated feature clusters with correlation 
coefficients > 0.9 were collapsed into the representative 
feature. Third, the radiomics signature for osteoporosis 

discrimination was established using the random forests 
(RF) and least absolute shrinkage and selection opera-
tor (LASSO) regression algorithm with 10-fold cross-
validation using “RandomForest” and “glmnet” packages. 
Fourth, we calculated the radiomics score (rad-score) 
according to a linear combination of the selected features 
and their respective LASSO coefficients. ROC curves 
were applied to assess the classification performance of 
radiomics signatures and HU values in the training and 
test sets. The area under the ROC (AUC) was calculated 
using “pROC” package. Finally, we estimated the clinical 
value through the decision curve analysis (DCA).

Statistical analysis
All statistical analyses were performed using R (ver-
sion 3.4.2; http://www.Rproject.org). The chi-square test 
(categorical variables) and Student t test (continuous 
variables) were conducted to compare the clinical char-
acteristics. P < 0.05 suggested a statistically significant 
difference. The DeLong test was applied to compare the 
difference in AUC.

Results
Clinical characteristics
The automated segmentation framework was con-
structed using a training cohort including CT data 
from 92 patients. Test cohorts were from two different 

Fig. 1 Flowchart shows the process of patient recruitment and exclusion
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campuses of our hospital consisting of 35 and 15 patients 
respectively. A total of 283 vertebrae were eligible for 
radiomics analysis in this research. We randomly divided 
the included subjects into a training cohort (N = 204) 
and a test cohort (N = 79). The clinical characteristics of 
patients for radiomics analysis are listed in Table 1.

Performance assessment of the segmentation framework
The interrater variability is reported in Table 2 and Sup-
plementary Data 1. The performance of HTCNN is sum-
marized in Table 2. The results suggested high agreement 
between the automatic framework and manual segmen-
tation with mean DSCs of 0.968, ASD of 0.481 for verte-
bral body segmentation, and mean DSCs of 0.961, ASD 

of 0.494 for trabecular compartment segmentation in test 
cohorts.

Features selection and radiomics signature establishment
A total of 1767 features were extracted from two ROIs 
respectively. First, excluding zero variance features and 
highly correlated features, 520 features from the tra-
becular region and 473 features from the entire vertebral 
body region were retained for RF selection. Second, the 
30 features with the highest importance according to 
Gini coefficients were screened for signature construc-
tion (Supplementary Materials). Third, we calculated the 
vertebrae and trabecular rad-score according to the opti-
mal radiomics signature selected by LASSO regression 

Table 1  Clinical characteristics in the training and test sets for radiomics analysis
Training cohort

(n = 204)
Test cohort

(n = 79)
P

Osteoporosis Non-osteoporosis P Osteoporosis Non-osteoporosis P
Sex 0.001* 0.827 0.499
 Male 3 68 6 28
 Female 30 103 10 35
Age 63.64.12 ± 7.47 59.13 ± 9.76 0.012* 63.56 ± 9.83 61.03 ± 9.95 0.365 0.063
HU 72.02 ± 33.25 137.10 ± 45.94 P < 0.001* 83.14 ± 41.89 120.10 ± 40.20 0.002* 0.030*

HTCNN_ HU 108.10 ± 29.84 182.90.1 ± 42.24 P < 0.001* 122.90 ± 34.97 167.00 ± 36.48 P < 0.001* 0.039*

Data are mean ± standard deviation.

HTCNN, hybrid transformer deep convolutional neural network; HU, Hounsfield unit.

*P value < 0.05

Fig. 2 Flow diagram for the construction of radiomics model based on the automatic segmentation of vertebral body and trabecular compartment
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with tenfold cross-validation (Fig.  3) (Supplementary 
Materials).

Assessment and validation of the radiomics model
ROC curves of rad-score and HU for osteoporosis predic-
tion were presented in Fig. 4. In terms of the discrimina-
tory power for osteoporosis, vertebrae rad-score yielded 
the best performance (training AUC = 0.95, 95%CI 0.91–
0.99, test AUC = 0.97, 95%CI 0.93–1.00), which was sig-
nificantly superior to trabecular rad-score, HTCNN_HU, 
and HU in the test cohort (p < 0.01). Additionally, the tra-
becular rad-score showed considerably higher accuracy 
than HTCNN_ HU and HU in the test set (AUC = 0.84 vs. 
0.79, 0.74, respectively, p < 0.01 each, Table 3). The clinical 
utility of the four predictors was evaluated using decision 
curve analysis (DCA), which revealed that the vertebrae 
rad-score conferred the highest net benefit (Fig. 5).

Discussion
In this study, we developed a hybrid deep learning algo-
rithm for automated 3D segmentation of the entire 
lumbar vertebral body and trabecular compartment in 

routine CT, which yielded high accuracy in different test 
sets. Compared with HU values and trabecular rad-score, 
the vertebrae rad-score revealed the highest diagnostic 
performance. The HTCNN-based vertebrae radiomics 
model can be served as a supportive tool for automated 
osteoporosis discrimination.

HU measurement is a common method for opportu-
nistic osteoporosis screening which can be performed 
directly in the PACS [21]. Comparing with noncalibrated 
HU values is crucial to explore a more precise way for 
opportunistic osteoporosis screening. However, the man-
ual measurement of HU values might not embrace the 
whole trabecular region. To address this limitation, we 
also performed HTCNN_HU measurement. Neverthe-
less, HTCNN_HU values are device-dependent, and the 
cut-off values for osteoporosis screening are inapplicable 
for other CT scanners with different imaging protocols 
[22]. Thus, we established radiomics signatures employ-
ing CT images from various scanning environments to 
maintain robustness.

ROI segmentation is a necessary step for radiomics 
analysis. Jiang et al. constructed a radiomics model to 

Table 2  Performance of automatic segmentation
Vertebral body Interrater(n = 5) Test1 (n = 35) Test2 (n = 15)

DSCs DSCs ASD DSCs ASD
L1 0.965 ± 0.015 0.964 ± 0.012 0.605 ± 0.521 0.965 ± 0.05 0.452 ± 0.069
L2 0.969 ± 0.009 0.956 ± 0.048 0.772 ± 1.953 0.967 ± 0.05 0.432 ± 0.086
L3 0.967 ± 0.016 0.969 ± 0.008 0.367 ± 0.165 0.965 ± 0.010 0.467 ± 0.142
L4 0.943 ± 0.060 0.973 ± 0.010 0.336 ± 0.139 0.976 ± 0.009 0.422 ± 0.196
Trabecular compartment of the vertebral body
L1 0.962 ± 0.010 0.966 ± 0.022 0.431 ± 0.443 0.960 ± 0.012 0.539 ± 0.552
L2 0.968 ± 0.011 0.966 ± 0.024 0.445 ± 0.486 0.959 ± 0.017 0.706 ± 0.911
L3 0.968 ± 0.008 0.963 ± 0.036 0.387 ± 0.266 0.959 ± 0.012 0.511 ± 0.604
L4 0.966 ± 0.010 0.962 ± 0.049 0.430 ± 0.385 0.955 ± 0.032 0.507 ± 0.496
Mean dice similarity coefficient and average surface distance (± standard deviation) are used to evaluate the performance of the automatic segmentation framework

DSCs, dice similarity coefficient; ASD, average surface distance

Fig. 3 Histogram illustrates the optimal feature signature and their weights for the vertebrae radiomics model (A) and trabecular radiomics model (B)
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Table 3  The discriminative power of osteoporosis for four predictors
Predictors Group AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV
HU Train 0.88 (0.82–0.93) 0.76 0.73 0.91 0.98 0.40

Test 0.74 (0.59–0.89) 0.85 0.94 0.50 0.89 0.67
HTCNN_ HU Train 0.94 (0.91–0.98) 0.86 0.84 0.94 0.99 0.53

Test 0.79 (0.67–0.91) 0.58 0.48 1.00 1.00 0.33
Trabecular rad-score Train 0.93 (0.88–0.98) 0.87 0.88 0.87 0.57 0.97

Test 0.84 (0.74–0.94) 0.73 0.88 0.70 0.42 0.96
Vertebrae rad-score Train 0.95 (0.91–0.99) 0.94 0.85 0.96 0.80 0.97

Test 0.97 (0.93-1.00) 0.91 0.94 0.91 0.71 0.98
PPV, positive predictive value; NPV, negative predictive value; HTCNN, hybrid transformer deep convolutional neural network; HU, Hounsfield unit

Fig. 5 Comparison of the clinical applicability between vertebrae radiomics score, trabecular radiomics score, HU, and HTCNN_HU in training (A) and 
validation cohort (B)

 

Fig. 4 Comparison of the discrimination ability between vertebrae radiomics score, trabecular radiomics score, HU, and HTCNN_HU in training (A) and 
validation cohort (B)
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detect osteoporosis based on lumbar vertebral bodies 
[11]. However, the selected cohorts stem from the same 
CT scanner meanwhile the semi-automated labeling 
method is not accurate for automated segmentation of 
intact vertebral body. Xie et al. combined radiomic fea-
tures from the cancellous compartment of L3 vertebrae 
in quantitative computed tomography (QCT) images 
and clinical information to discriminate osteoporosis 
and osteopenia [23]. Yet, only L3 vertebrae were consid-
ered in radiomics analysis and the labeling of ROI was 
performed by manual segmentation, which was time-
consuming in the case of processing large image data. 
Compared with manual or semi-automatic segmentation, 
automated segmentation is thought to be more efficient 
and reproducible for radiomics analysis [24].

CNN and transformer have been increasingly applied 
to automated vertebrae recognization [25, 26]. Fang et 
al. established a vertebral body segmentation model for 
osteoporosis prediction using the 2D U-net algorithm, 
with a mean DSC of 0.85 [27]. Our hybrid architecture 
suggested superior accuracy in vertebral body segmen-
tation compared to conventional CNN. Moreover, auto-
mated osteoporosis screening with deep learning has 
attracted attention, given that it obviates extra examina-
tions by DXA or QCT. Yasaka et al. indicated significant 
correlations between CNN-based area BMD and DXA 
scores in both internal and external validation groups 
[28]. Additionally, volume BMD automatically extracted 
from routine CT showed a strong correlation with QCT-
derived volume BMD [29]. Wang et al. developed a deep-
learning model with a transformer encoder to estimate 
lumbar BMD from chest X-rays, which achieves high 
accuracy in osteoporosis classification [30]. Our find-
ings confirm the high performance of the HTCNN-based 
radiomics model for osteoporosis screening in routine 
CT. This fully automatic pipeline might be implemented 
into a software program applied in the clinical scenario.

Several limitations should be acknowledged. First, in 
this single-center retrospective study, we only validated 
the performance of HTCNN-based radiomics models in 
the internal cohort, though image data was derived from 
six routine CT scanners with different protocols. Thus, 
multicenter studies with prospective designs are required 
to validate the generalizability of radiomics models. Sec-
ond, similar to the previous CNN framework for ver-
tebrae segmentation, vertebrae with severe fractures, 
degenerative changes, and implantation materials were 
excluded. Third, normalization protocols are required 
to maintain the robustness of radiomics, as the techni-
cal acquisition and parameter settings of CT images from 
different institutions contribute to deviations in radiomic 
features. Supplementary approaches for feature extrac-
tion or image conversion are feasible options [31, 32].

In conclusion, for automated osteoporosis screening 
in routine CT, we constructed and validated a HTCNN-
based vertebrae radiomics model with high efficacy, 
which can promote clinical decisions and supplement the 
current screening system.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12880-024-01240-5.

Supplementary Material 1

Supplementary Material 2

Acknowledgements
Not applicable.

Author contributions
All authors contributed to the study conception and design. Material 
preparation, data collection and analysis were performed by Jiachen Liu, 
Xiuqi Shan and Yingdi Zhang. The first draft of the manuscript was written 
by Jiachen Liu and all authors commented on previous versions of the 
manuscript. All authors read and approved the final manuscript.

Funding
This study has received funding by the Nature and Science Project of Liaoning 
Province (2022-KF-12-09). The funding bodies played no role in the design of 
the study and collection, analysis, and interpretation of data and in writing the 
manuscript.

Data availability
All data generated or analyzed during this study are included in this published 
article.

Declarations

Ethics approval and consent to participate
The study was approved by the ethics committee of Shengjing Hospital of 
China Medical University. The committee of Shengjing Hospital of China 
Medical University waived the need for patients to sign informed consent. 
All methods were carried out in accordance with relevant guidelines and 
regulations.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 3 March 2023 / Accepted: 6 March 2024

References
1. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-

Hughes B. The recent prevalence of osteoporosis and low bone mass in the 
United States based on bone mineral density at the femoral neck or lumbar 
spine. J Bone Min Res. 2014;29(11):2520–6.

2. Zou D, Jiang S, Zhou S, Sun Z, Zhong W, Du G, Li W. Prevalence of osteo-
porosis in patients undergoing lumbar Fusion for lumbar degenerative 
diseases: a combination of DXA and Hounsfield units. Spine (Phila Pa 1976). 
2020;45(7):E406–10.

3. Chin DK, Park JY, Yoon YS, Kuh SU, Jin BH, Kim KS, Cho YE. Prevalence of 
osteoporosis in patients requiring spine surgery: incidence and significance 
of osteoporosis in spine disease. Osteoporos Int. 2007;18(9):1219–24.

https://doi.org/10.1186/s12880-024-01240-5
https://doi.org/10.1186/s12880-024-01240-5


Page 8 of 8Liu et al. BMC Medical Imaging           (2024) 24:62 

4. Dipaola CP, Bible JE, Biswas D, Dipaola M, Grauer JN, Rechtine GR. Survey 
of spine surgeons on attitudes regarding osteoporosis and osteomalacia 
screening and treatment for fractures, fusion surgery, and pseudoarthrosis. 
Spine J. 2009;9(7):537–44.

5. Choi MK, Kim SM, Lim JK. Diagnostic efficacy of Hounsfield units in spine CT 
for the assessment of real bone mineral density of degenerative spine: cor-
relation study between T-scores determined by DEXA scan and Hounsfield 
units from CT. Acta Neurochir (Wien). 2016;158(7):1421–7.

6. Zou D, Sun Z, Zhou S, Zhong W, Li W. Hounsfield units value is a better 
predictor of pedicle screw loosening than the T-score of DXA in patients with 
lumbar degenerative diseases. Eur Spine J. 2020;29(5):1105–11.

7. Valentinitsch A, Trebeschi S, Kaesmacher J, Lorenz C, Löffler MT, Zimmer 
C, Baum T, Kirschke JS. Opportunistic osteoporosis screening in multi-
detector CT images via local classification of textures. Osteoporos Int. 
2019;30(6):1275–85.

8. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, 
they are data. Radiology. 2016;278(2):563–77.

9. Yang H, Yan S, Li J, Zheng X, Yao Q, Duan S, Zhu J, Li C, Qin J. Prediction of 
acute versus chronic osteoporotic vertebral fracture using radiomics-clinical 
model on CT. Eur J Radiol. 2022;149:110197.

10. Chee C, Yoon M, Kim K, Ko Y, Ham S, Cho Y, Park B, Chung H. Combined 
radiomics-clinical model to predict malignancy of vertebral compression 
fractures on CT. Eur Radiol. 2021;31(9):6825–34.

11. Jiang Y, Xu X, Wang R, Chen C. Radiomics analysis based on lumbar spine CT 
to detect osteoporosis. European radiology 2022.

12. Xue Z, Huo J, Sun X, Sun X, Ai ST, LichiZhang, Liu C. Using radiomic features 
of lumbar spine CT images to differentiate osteoporosis from normal bone 
density. BMC Musculoskelet Disord. 2022;23(1):336.

13. Zhang Y, Shi Z, Wang H, Yan C, Wang L, Mu Y, Liu Y, Wu S, Liu T. LumNet: a 
deep neural network for lumbar paraspinal muscles segmentation. In: 2019; 
Cham. Springer International Publishing; 2019. pp. 574–85.

14. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner 
T, Dehghani M, Minderer M, Heigold G, Gelly S et al. An Image is Worth 
16x16 Words: Transformers for Image Recognition at Scale. ArXiv 2020, 
abs/2010.11929.

15. Valanarasu JMJ, Oza P, Hacihaliloglu I, Patel VM. Medical transformer: Gated 
axial-attention for medical image segmentation. In: Medical Image Computing 
and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, 
Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24: 2021: 
Springer; 2021: 36–46.

16. Wei Y, Yang M, Xu L, Liu M, Zhang F, Xie T, Cheng X, Wang X, Che F, Li Q et al. 
Novel computed-tomography-based transformer models for the Noninvasive 
prediction of PD-1 in pre-operative settings. Cancers (Basel) 2023, 15(3).

17. Dai Y, Gao Y, Liu F. Transmed: transformers advance multi-modal medical 
image classification. Diagnostics. 2021;11(8):1384.

18. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 
2002;359(9321):1929–36.

19. Pickhardt PJ, Lee LJ, del Rio AM, Lauder T, Bruce RJ, Summers RM, Pooler 
BD, Binkley N. Simultaneous screening for osteoporosis at CT colo-
nography: bone mineral density assessment using MDCT attenuation 

techniques compared with the DXA reference standard. J Bone Min Res. 
2011;26(9):2194–203.

20. van Griethuysen J, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-
Tan R, Fillion-Robin J, Pieper S, Aerts H. Computational Radiomics System to 
Decode the Radiographic phenotype. Cancer Res. 2017;77(21):e104–7.

21. Pickhardt P, Pooler B, Lauder T, del Rio A, Bruce R, Binkley N. Opportunistic 
screening for osteoporosis using abdominal computed tomography scans 
obtained for other indications. Ann Intern Med. 2013;158(8):588–95.

22. Garner H, Paturzo M, Gaudier G, Pickhardt P, Wessell D. Variation in attenu-
ation in L1 trabecular bone at different tube voltages: caution is warranted 
when screening for osteoporosis with the Use of opportunistic CT. AJR Am J 
Roentgenol. 2017;208(1):165–70.

23. Xie Q, Chen Y, Hu Y, Zeng F, Wang P, Xu L, Wu J, Li J, Zhu J, Xiang M, et al. 
Development and validation of a machine learning-derived radiomics model 
for diagnosis of osteoporosis and osteopenia using quantitative computed 
tomography. BMC Med Imaging. 2022;22(1):140.

24. Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and generalizability in 
Radiomics modeling: possible strategies in radiologic and statistical perspec-
tives. Korean J Radiol. 2019;20(7):1124–37.

25. Sekuboyina A, Husseini ME, Bayat A, Löffler M, Liebl H, Li H, Tetteh G, Kukačka 
J, Payer C, Štern D, et al. VerSe: a vertebrae labelling and segmentation 
benchmark for multi-detector CT images. Med Image Anal. 2021;73:102166.

26. Tao R, Liu W, Zheng G. Spine-transformers: vertebra labeling and segmenta-
tion in arbitrary field-of-view spine CTs via 3D transformers. Med Image Anal. 
2022;75:102258.

27. Fang Y, Li W, Chen X, Chen K, Kang H, Yu P, Zhang R, Liao J, Hong G, Li S. 
Opportunistic osteoporosis screening in multi-detector CT images using 
deep convolutional neural networks. Eur Radiol. 2021;31(4):1831–42.

28. Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Prediction of bone mineral 
density from computed tomography: application of deep learning with a 
convolutional neural network. Eur Radiol. 2020;30(6):3549–57.

29. Sollmann N, Löffler MT, El Husseini M, Sekuboyina A, Dieckmeyer M, Rühling 
S, Zimmer C, Menze B, Joseph GB, Baum T, et al. Automated opportunistic 
osteoporosis screening in Routine Computed Tomography of the spine: com-
parison with dedicated quantitative CT. J Bone Min Res. 2022;37(7):1287–96.

30. Wang F, Zheng K, Lu L, Xiao J, Wu M, Kuo CF, Miao S. Lumbar bone Mineral 
density estimation from chest X-Ray images: anatomy-aware attentive Multi-
ROI modeling. IEEE Trans Med Imaging. 2023;42(1):257–67.

31. Orlhac F, Frouin F, Nioche C, Ayache N, Buvat I. Validation of a method 
to compensate Multicenter effects affecting CT Radiomics. Radiology. 
2019;291(1):53–9.

32. Lee S, Cho Y, Hong Y, Jeong D, Lee J, Kim S, Lee S, Choi Y. Deep learning-based 
image Conversion improves the reproducibility of computed tomography 
Radiomics features: a Phantom Study. Invest Radiol. 2022;57(5):308–17.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Hybrid transformer convolutional neural network-based radiomics models for osteoporosis screening in routine CT
	Abstract
	Introduction
	Materials and methods
	Study patient population
	CT image acquisition
	Image annotation and hybrid transformer convolutional neural network training
	HU measurement and radiomics features extraction
	Radiomics signature establishment and evaluation
	Statistical analysis

	Results
	Clinical characteristics
	Performance assessment of the segmentation framework
	Features selection and radiomics signature establishment
	Assessment and validation of the radiomics model

	Discussion
	References


