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Abstract 

Pulmonary diseases are various pathological conditions that affect respiratory tissues and organs, making 
the exchange of gas challenging for animals inhaling and exhaling. It varies from gentle and self-limiting such 
as the common cold and catarrh, to life-threatening ones, such as viral pneumonia (VP), bacterial pneumonia (BP), 
and tuberculosis, as well as a severe acute respiratory syndrome, such as the coronavirus 2019 (COVID-19). The cost 
of diagnosis and treatment of pulmonary infections is on the high side, most especially in developing countries, 
and since radiography images (X-ray and computed tomography (CT) scan images) have proven beneficial in detect-
ing various pulmonary infections, many machine learning (ML) models and image processing procedures have been 
utilized to identify these infections. The need for timely and accurate detection can be lifesaving, especially dur-
ing a pandemic. This paper, therefore, suggested a deep convolutional neural network (DCNN) founded image detec-
tion model, optimized with image augmentation technique, to detect three (3) different pulmonary diseases (COVID-
19, bacterial pneumonia, and viral pneumonia). The dataset containing four (4) different classes (healthy (10,325), 
COVID-19 (3,749), BP (883), and VP (1,478)) was utilized as training/testing data for the suggested model. The model’s 
performance indicates high potential in detecting the three (3) classes of pulmonary diseases. The model recorded 
average detection accuracy of 94%, 95.4%, 99.4%, and 98.30%, and training/detection time of about 60/50 s. This 
result indicates the proficiency of the suggested approach when likened to the traditional texture descriptors tech-
nique of pulmonary disease recognition utilizing X-ray and CT scan images. This study introduces an innovative deep 
convolutional neural network model to enhance the detection of pulmonary diseases like COVID-19 and pneumonia 
using radiography. This model, notable for its accuracy and efficiency, promises significant advancements in medi-
cal diagnostics, particularly beneficial in developing countries due to its potential to surpass traditional diagnostic 
methods.
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Introduction
Recently, the human race has been threatened by a high 
mortality rate due to pulmonary diseases. In the year 
2020 alone, over 3.5 million pulmonary diseases such as 
Covid-19-related deaths were recorded worldwide, mak-
ing it the third source of demise worldwide, with 80% 
of these demises, predominantly in developing and low 
to middle-income countries [1, 2]. Pulmonary disease 
is deadly because it affects the respiratory tissues and 
organs, especially the lungs, making breathing challeng-
ing for animals. Virtually all varieties of pulmonary dis-
ease share similar indications, including fever, dry cough, 
fatigue, and rapid shallow breathing [3].

Lung diseases posed enormous risk by causing around 
4 million premature deaths annually until late 2019, when 
the risk factor doubled due to the outburst of the new 
coronavirus illness (Covid-19) in Wuhan, China [4, 5]. 
Since then, over 202 million cases have been reported, 
4.2 million deaths, and an average daily cases of about 
750,000 as of August 2021 [6]. Considering the transience 
degree owing to lung ailment infections and the conta-
gious nature of some of these diseases, coupled with 
time-consuming and expensive diagnosis procedures, 
there is an urgent need for responsive diagnostic and 
detection systems, as early detection could save many 
lives by preventing premature deaths.

One promising approach to the automated diagnosis 
of illnesses recently is artificial intelligence (AI) [7–9]. 
It has been revolutionizing the medical and healthcare 
industries in many ways, such as drug research and medi-
cal imagery, with a reasonable level of accuracy [10]. 
Two major techniques embody AI: ML and deep learn-
ing (DL). It has shown its efficacy by solving problems 
ranging from natural language processing to image classi-
fication using different DL and ML models. It makes pre-
dictions and inferences by analyzing the large quantity 
of input data, performs intelligent tasks such as feature 
detection, pattern recognition, translation, and percep-
tron on the data, and then makes the relevant decision 
[11–13]. Because of the high performance and other 
proven efficient qualities of AI in image identification and 
classification tasks, many researchers have conducted 
studies linking AI-founded techniques to the classifica-
tion and prediction of different pulmonary diseases using 
either CT or X-ray imageries [14–17].

The challenge of possible overlap of symptoms of pul-
monary diseases makes diagnosis difficult, especially 
when there is a shortage of experienced personnel or an 
absence of a patient’s health record at hand. This sce-
nario prompted for creation of an automated diagnosis 
process that can accurately detect the presence of any 
of the three pulmonary diseases earlier mentioned. To 
the authors’ knowledge, this investigation is the first to 

utilize AI techniques to classify and detect three pul-
monary diseases.

For this reason, this investigation, therefore, sug-
gested a DCNN-based image detection model, specifi-
cally, a CNN optimized with an image augmentation 
approach, to detect three (3) different pulmonary dis-
eases (COVID-19, BP, and VP). CT and X-ray image-
ries were utilized to have more image datasets, enough 
to make concrete inferences and enhance the model’s 
detection ability, as CT can detect abnormal features in 
the chest images even before symptoms appear.

The core contribution of this study is as follows:

1. Proposed a novel PulmoNet model based on the 
DCNN model capable of performing multiclass 
image classification utilizing CT scans and X-ray 
images.

2. Use of an image augmentation technique to improve 
the proposed DCNN model

3. Use of DCNN models to classify and detect three 
pulmonary diseases.

4. Classification of pulmonary diseases into four (4) 
classes, three (3) classes, two (2) classes (Covid_19 
and Healthy), and two (2) classes (Pneumonia and 
Healthy).

5. Evaluation of the proposed system using confusion 
matrix performance measures such as precision, 
recall, and f1-score

6. Comparison of the suggested PulmoNet model with 
existing systems

The research aimed to create and evaluate a spe-
cialized deep convolutional neural network (DCNN) 
model for accurately detecting various lung illnesses 
by analyzing radiographic imaging methods, such as 
X-rays and CT scans. The focus of our study was on 
carefully constructing and perfecting this model. The 
process included thorough assessments of the model’s 
accuracy in detecting illnesses such as COVID-19, bac-
terial pneumonia, and viral pneumonia. In addition, 
the research sought to compare the diagnostic capa-
bilities of the DCNN model with those of traditional 
approaches to acquire a thorough grasp of its effective-
ness and future enhancements in the area of medical 
diagnostics.

The remainder of this article is prearranged thus: 
“Related literature” section emphasizes the analysis of 
related literature; “Methodology” section discusses the 
research methods, including the materials, various data-
sets, and their repositories. “Results and discussion” 
section demonstrates the experimented outcomes and 
discussion, and lastly, “Discussion” section concludes the 
investigation.
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Related literature
Several research works have experimented with AI in 
healthcare to improve the conventional healthcare sys-
tem and industry [18]. The need for an affordable, effi-
cient and accurate diagnostic system that can serve as 
an alternative to the existing traditional time-consuming 
and expensive diseases diagnosis, especially pulmo-
nary diseases, triggered an upsurge in AI-in-healthcare 
research [19–21]. To investigate the relationship between 
AI schemes and diseases detection, researchers have con-
ducted investigations ranging from predicting future dis-
eases using patient’s previous historical health records to 
detecting and identifying possible ailments using CT and 
X-ray imageries [10, 15, 22, 23].

Due to the similarity of symptoms of pulmonary dis-
eases, experts sometimes misdiagnose one for the 
other [24]. For instance, when the coronavirus 2019 
(COVID-19) pandemic broke out officially in Wuhan, 
China, around December 2019 [1, 25–27], it was initially 
thought to be severe acute pneumonia, probably severe 
acute respiratory syndrome (SARS) or middle east res-
piratory syndrome (MERS) until it was established as 
novel COVID-19. Because of its novelty, there were chal-
lenges in testing and diagnosis as it is highly infectious. 
Many health workers have been unconsciously infected 
while the medical services provisioning and the testing 
kits were either unavailable or expensive and time-con-
suming [14]. This necessitates an alternative method of 
virus detection, of which AI has shown a great prospect, 
as pointed out by Haenssle et al. [25]; Mar & Soyer [28].

Radiological images obtained from CT and X-rays 
have similarly been a great source of data for training 
AI-founded disease recognition and analysis systems to 
achieve swift pulmonary disease diagnosis and manage-
ment [29]. CT and X-ray imageries have been identified 
as sensitive means of detecting pneumonia in COVID-
19 patients and can be exploited as screening equipment 
sideways with reverse transcription-polymerase chain 
reaction (RT-PCR), the utmost popular COVID-19 rec-
ognition technique [30]. In Pan et al. [30], changes were 
observed in COVID-19 pneumonia survivors’ lungs as 
revealed by CT scan imageries ten days after the start 
of the indications. Chan et al. [31] also pointed out that 
changes were observed in CT and X-ray imageries of 
the chest long before clinical symptoms of COVID-19 
appeared. These changes can vary from right infrahilar 
space opacity, as in Kong & Agarwal [32]), to round lung 
opacities Zu et al. [33] and ground-glass opacities (GGO) 
or mixed GGO in so many patients [33]. Furthermore, 
it was identified that one out of three patients studied 
had one nodular opacity at the lung’s lower left region, 
whereas others had up to four and five irregular opacities 
in the two lungs [34–36].

Of all the AI schemes that have been adopted in health-
care systems, DL-based techniques have been promising 
[37–39]. One DL-based method popularly adopted for 
various disease recognition exploiting CT scans and/or 
X-ray imageries is CNN [40, 41]. It is biologically inspired 
as its neuron connectivity pattern resembles the ani-
mal visual cortex [42, 43]. CNN is the best commonly 
used technique for image categorization because it rela-
tively optimizes the kernels via automated learning and 
requires little preprocessing [44, 45].

CNN Pulmonary disease detection systems have been 
well-researched in recent years due to the COVID-19 
global pandemic. Although so many excellent research 
works on using CT [46] and X-ray imageries to detect 
pulmonary diseases have been published, they are not 
yet an alternative to the traditional methods of diagnosis. 
However, they have promised to be a helpful association 
with the traditional diagnosis methods, thereby creat-
ing a huge avenue for research and amelioration before 
commercialization. (Some of the research works focus-
ing on DL-based pulmonary diseases detection using 
features from CT imageries and X-ray imageries of in-
patients include the work of [47]. In their work, a deep 
feature network, specifically ResNet50, was combined 
with a support vector machine (SVM) to identify patients 
infected with COVID-19 and classify normal patients 
from infected ones. Although their work achieved an 
accuracy of about 95.4%, it only focused on a single class 
detection (COVID-19). Similarly, Hemdan et al. [48] pro-
posed a DL-based classifier (COVIDX net) to categorize 
two classes of 50 clinical X-ray imageries of COVID-19 
and normal chest images. Although their model accom-
plished about 90% accuracy, the dataset utilized to train 
and test the suggested techniques is not enough for the 
model to generalize.

In another work, Song et al. [49] established a classifier 
(DRE-Net) for COVID-19 and non-COVID-19 catego-
rization utilizing CT imageries. The resulting technique 
has an accuracy of about 86% but only focuses on two-
class classification with only 88 CT scan images. Also, 
in Wang et al. [50], a two-class classification system was 
suggested using CT scan images. An M-inception model 
was modified and tested on the obtained pathogen-con-
firmed COVID-19 images, and the resulting model had 
an average of about 84.4% accuracy.

Apart from these previous works, other research 
focuses on more than two classes of pulmonary disease 
detection and classification. Some of these works include 
Narin et  al. [51], which suggested a DCNN ResNet-50 
technique to categorize four classes of (COVID-19, nor-
mal (healthy), VP, and BP). The technique accomplished 
an accuracy of about 98% for two-class classification. 
Also, Ozturk et al. [52] proposed that the DarkCovidNet 
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model performs two and three-class classifications, and 
the technique achieved an average accuracy of about 
90.6% for both class classifications. Khan et al. [53] pro-
posed that Xception-base Coronet was exploited for mul-
ticlass categorization by exploiting X-ray imageries.

This study focuses on building, training, and evaluat-
ing the effectiveness of the suggested PulmoNet founded 
on the CNN model and capable of performing multi-
class image classification exploiting CT scans and X-ray 
imageries. It comprises a combination of convolutional, 
dense, max pooling, and flattened layers combined with 
four (4) different activation functions: ReLU, Sigmoid, 
Leaky ReLU, and Tanh.

The current body of research in artificial intelligence 
(AI) and healthcare primarily emphasizes the creation 
of cost-effective, streamlined, and precise diagnostic 
tools, with a particular emphasis on pulmonary disor-
ders. Research encompasses a wide range of activities, 
including predicting illnesses based on historical health 
information and using CT and X-ray images for disease 
diagnosis. There is a strong focus on the need for alter-
native approaches because of the incorrect identifica-
tion of comparable symptoms in respiratory disorders, 
which was brought to attention during the COVID-19 
pandemic. Research has used radiological images to 
teach artificial intelligence systems, demonstrating their 
efficacy in rapid diagnosis. Deep Learning (DL) meth-
ods, particularly Convolutional Neural Networks (CNN), 
have been significant in these investigations, with CNN 
being a favoured option because of its practical picture 
classification skills. Several studies have investigated deep 
learning (DL) algorithms for identifying lung illnesses 
utilizing CT and X-ray images, with specific emphasis on 
detecting COVID-19. These investigations have shown 
encouraging outcomes. However, they have not reached 
comparability with conventional diagnostic techniques. 
This suggests that further study and development are 
necessary.

Methodology
The methodology employed to achieve the aim and 
objectives of this work is in three stages, which include:

a. Data collection
b. Data preprocessing and splitting
c. Model design, training, and evaluation

Data collection
The dataset for this investigation was obtained from 
the combination and modification of different Covid-
19, VP, BP, and healthy data repositories. These include 

the Actualmed-covid-chest x-ray dataset [54], SARS-
COV-2 CT-scan dataset [55], x-ray dataset of Covid-
19 Pneumonia detector and Covid-19 Radiography 
Database on Kaggle [56, 57], Covid-19 image dataset of 
Cohen et  al. [55] and so on. In the end, 16,435 image 
datasets comprised of 883 bacterial pneumonia images, 
1,478 viral pneumonia images, 3,749 covid-19 images, 
and 10,325 healthy images were generated. Sample 
imageries for each of the classes are presented in Figs. 1, 
2, 3 and 4.

Figure 1 presents an x-ray imageries of a BP patient. 
The figure shows a focal opacity that indicates con-
solidation without cavitation on the right lung’s upper 
lobe. The cardio-phrenic and costo-phrenic angles can 
be seen to be free of air-fluid level.

Fig. 1 Sample of chest X-ray image of a BP patient

Fig. 2 Sample of chest X-ray image of a non-Covid VP patient
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Figure  2 presents an x-ray image of a non-Covid 
VP patient. The image demonstrates extended two-
sided ground glass opacities (GGO), which indicates 
extended septal thickenings and alveolar mutila-
tion. Similarly, in Fig. 3, the chest x-ray of a Covid-19 
patient is presented. The radiography image shows 
hyperlucent lung fields, which specify lung hyperin-
flation owing to such small airway obstruction caused 
by bronchitis. Other features, such as manifold patchy 
opacities in both lung fields and blunting of costo-
phrenic angles, can also be observed in the image.

Figure  4 presents the x-ray representation of a 
healthy person. The radiography chest image shows 
the normal shape and size of the chest wall in a nor-
mal situation and with a normal presence of the tra-
chea, mediastinum, and heart. No focal opacity, 
air-fluid level, abnormal bronco-vascular markings, 

or hyperlucency is observed. Both cardio-phrenic and 
costo-phrenic angles are also unrestrained.

Description of dataset
The dataset used for the study consists of 16,435 image 
datasets which are divided into four categories: bacterial 
pneumonia, viral pneumonia, COVID-19, and healthy 
cases. Here are the details of the dataset:

• Bacterial Pneumonia (BP): 883 images.
• Viral Pneumonia (VP): 1,478 images.
• COVID-19: 3,749 images.
• Healthy: 10,325 images.

These images were sourced from various public data 
repositories and modified to create a comprehensive 
dataset for the study. Notably, the repositories included 
the Actualmed-COVID-chest x-ray dataset, SARS-
COV-2 CT-scan dataset, a COVID-19 Pneumonia 
detector x-ray dataset, and the COVID-19 Radiography 
Database available on Kaggle. Additionally, the COVID-
19 image dataset from Cohen et al. was also utilized.

The images for each class were presented in the study 
to demonstrate typical features associated with each con-
dition. For example, the BP patient images showed focal 
opacity without cavitation in the right lung’s upper lobe, 
indicative of bacterial pneumonia.

For the model training and testing, the dataset was 
divided into 85% for training and 15% for testing. The 
dataset’s distribution across various classes was instru-
mental in training the model to distinguish between the 
different pulmonary diseases and healthy cases, demon-
strating the effectiveness of the model in terms of accu-
racy and potential for real-world application.

The comprehensive dataset was vital in achieving the 
high detection accuracies reported in the study: 94% 
for 4-class classification, 95.4% for 3-class, 99.4% for 
COVID-19 vs. Healthy, and 98.3% for Pneumonia vs. 
Healthy. These results indicate the model’s proficiency 
compared to traditional pulmonary disease recognition 
methods using x-ray and CT scan images.

Data preprocessing and splitting
After the dataset is generated, the sizes of x-ray images 
are reduced by rescaling to obtain a faster model train-
ing process. The rescaled images are then converted to 
greyscale. The obtained preprocessed dataset is then 
subdivided into three subsets for 4 class, 3 class, and 2 
class classifications correspondingly. Tables  1, 2 and 3 
show the detail of each class classification and the sum of 
images utilized for training and testing each class. Finally, 

Fig. 3 Sample of chest X-ray image of a Covid-19 patient

Fig. 4 Sample of chest X-ray image of a healthy person
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the dataset is split into 85% training and 15% testing 
samples.

Significant disparity in the number of input images 
for each class have been handled using image augmen-
tation method as it is a valuable strategy for addressing 
data imbalance in CNN models. By artificially expand-
ing the training dataset with augmented samples, it 
helps to alleviate the challenges posed by imbalanced 
class distributions. Various image augmentation tech-
niques employed to introduce diversity and variability 
into the training data and in turn improve the detection 
ability of our model include:

1. Rotation: Rotating images within a certain range to 
simulate different angles of view.

2. Translation: Shifting images horizontally or vertically 
to simulate different positions within the frame.

3. Scaling: Rescaling images to different sizes, allowing 
the model to learn robustness to variations in object 
sizes. And

4. Flipping: Mirroring images horizontally or vertically 
to create additional variations.

Model design, training, and evaluation
This study’s proposed model (PulmoNet) is an 
improved 26-layer CNN-based model motivated by a 
wide residual network (WRN) architecture. This ver-
sion of CNN was considered because it takes a shorter 
training time due to its shallow nature. WRN solves 
problems faster by adding shortcuts between its various 
layers, thereby preventing distortion that can occur as 
the network becomes complex. The model was imple-
mented using Keras, Tensorflow, and Jupyter note-
book. The training was done using an NVIDIA K80 
graphics processing unit (GPU) with and batch size of 
16, an epoch of 50, a learning rate of 0.001, and Adam 
optimizer were set as training parameters. Batch nor-
malization was employed to stabilize the technique by 
standardizing the input size. Various hyperparameter 
combinations experimented with convolution, and max 
pool layers gradually increased as data shuffling was 
enabled at each epoch. The effectiveness of the exam-
ined approach was observed and recorded each time 
these layers were increased until a better and more 
stable outcome was recorded. All these were done to 
obtain a sensitive approach that can obtain any slight 
change in features of the input images.

In the end, the final model consists of 26 layers in total, 
including convolutional layers (‘Conv2D’), max-pooling 
layers (‘MaxPooling2D’), a flatten layer, and densely con-
nected layers (‘Dense’). The activation function used is 
ReLU, except for the output layer where softmax acti-
vation is used for multi-class classification. The model 
is compiled with the Adam optimizer and categorical 
cross-entropy loss. Summary of parameters of proposed 
PulmoNet model is presented in Table 1. It can be dem-
onstrated that the model input images with input shape 
(64, 64, 1) and loss function used for the implementation 
is Categorical Cross_entropy. A learning rate of 0.001 
was set for the experiment with adam optimizer. The 
activation functions used was ReLU and Softmax at the 
dense layer. While training the model the metric used 
was accuracy.

An n-fold cross-validation technique was exploit to 
assess the effectiveness of the suggested classification 
technique by randomly dividing the training dataset into 
three (3) equal parts. Two were utilized for training, and 
the remaining was utilized for validation. Shifting of the 

Table 1 Summary of the parameters used for the PulmoNet 
model

Hyperparameters Value

Input shape (64, 64, 1)

Number of Layers 26

Loss Function Categorical Cross_entropy

Learning Rate 0.001

Optimizer Adam

Activation Functions ReLU, Softmax

Performance Metrics Accuracy, precision, recall and f1-score

Table 2 Accuracy per class (4 classes)

Class ACC Number 
of 
samples

Bacterial_Pneumonia 95 131

Covid_19 93 561

Viral_Pneumonia 91 221

Healthy 97 1,548

Table 3 Accuracy per class (3 classes)

Class ACC Number 
of 
samples

Bacterial_Pneumonia 95 131

Covid_19 96 561

Healthy 95.3 395
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testing and validation sets was strategically repeated con-
tinuously Five (5) times. The overall performance of the 
suggested approach was assessed by computing the aver-
age values from each fold.

Finally, the suggested approach’s effectiveness was 
evaluated by exploiting a system of measurement which 

includes accuracy (Acc), precision (Prec), recall (Rec), 
f1-score, and confusion matrix.

PulmoNet mathematical background
PulmoNet is a deep CNN-based model developed to 
classify multiclass images using CT scans and X-ray 
images. It is a 26 layers model motivated by WRN 
architecture which introduces the concept of widen-
ing the network by increasing the number of channels 
in the convolutional layers compared to traditional 
Residual Networks (ResNets). The key idea is to have 
a wider network with an increased capacity to capture 
more complex patterns. An overview of the mathemati-
cal representation of PulmoNet is presented thus:

Assuming input images of size (W, H, C), where W is 
the width, H is the height, and C is the number of color 
channels.

And convolutional layers performing convolution 
operation such that:

• Each convolutional layer applies a set of filters to 
the input image.

• Mathematically, the convolution operation can be 
defined as:

where C_i is the output feature map of the i-th convolu-
tional layer, F_i is the filter/kernel of size K_i, and A_i is 
the activation function applied to the output.

The main building blocks of the WRN are the Wide 
Residual Blocks, which contain multiple convolutional 
layers and skip connections.

Each Wide Residual Block consists of the following 
operations:

• Batch Normalization which normalizes the activa-
tions of the previous layer.

• Activation which applies an activation function, 
such as ReLU.

• Convolution which applies a series of convolutional 
layers with increased channel size. And

(1)C_i = A_i(Conv2D(F_i,K_i)(C_{i − 1}))

• Skip Connection which adds the input of the block 
to the output of the block, creating a shortcut con-
nection.

Mathematically, the Wide Residual Block is repre-
sented thus:

Where B_i is the output of the i-th Wide Residual 
Block and C_{i − 1} is the input of the block.

After the Wide Residual Blocks, a global average pool-
ing operation is performed to aggregate the spatial infor-
mation into a single vector.

Mathematically, the global average pooling operation is 
represented as:

Finally, a fully connected layer is applied to process the 
aggregated features.

It is Mathematically represented as thus:

The softmax activation function is applied to the out-
put layer to obtain class probabilities and it is represented 
mathematically as:

Categorical cross-entropy loss function is then applied 
and represented mathematically as thus:

During training, the model aims to minimize the loss 
by adjusting its weights and biases and Adam optimizer 
is applied to update the model’s parameters.

Mathematically, the parameter update is represented as:

Where θ_i represents the trainable parameters in the 
i-th layer, learning_rate is the learning rate for the opti-
mizer, and ∂L/∂θ_i is the derivative of the loss with 
respect to θ_i.

The provided description outlines the mathematics 
behind the operations of a Convolutional Neural Network 
(CNN), particularly focusing on Wide Residual Networks 
(WRN). These equations and operations collectively con-
stitute the forward and backward passes of training a 
CNN, enabling it to learn from data and make predictions.

1. Convolution Operation (Eq.  1): This describes the 
process where a set of learnable filters is applied to 

(2)B_i = SkipConnection(BatchNormalization(Activation(Convolution(F_i,K_i))))+C_{i − 1}

(3)GAP = GlobalAveragePooling2D()(B_n)

(4)D = Dense(U , activation = A)(GAP)

(5)S = Softmax(D)

(6)L = CategoricalCrossentropy(S,True_Labels)

(7)θ_i = θ_i − learning_rate ∗ ∂L/∂θ_i
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the input image to create feature maps. Each filter 
detects different features, and an activation function 
like ReLU introduces non-linearity, helping the net-
work learn complex patterns.

2. Wide Residual Blocks (Eq.  2): WRNs improve upon 
standard residual networks by increasing the width 
(number of channels) instead of the depth (number 
of layers). These blocks use batch normalization for 
stabilizing learning, and skip connections for alleviat-
ing the vanishing gradient problem by allowing direct 
gradients flow.

3. Global Average Pooling (Eq.  3): This operation 
reduces each feature map to a single number by aver-
aging out the spatial dimensions, reducing the total 
number of parameters and computation in the net-
work.

4. Fully Connected Layer (Eq. 4): Here, the pooled fea-
tures are flattened and connected to as many neurons 
as there are classes, to prepare for classification.

5. Softmax Function (Eq. 5): This activation function is 
used in the output layer to calculate the probabilities 
of each class, ensuring they sum up to one.

6. Categorical Cross-Entropy (Eq. 6): It’s a loss function 
suitable for multi-class classification problems, meas-
uring the difference between the predicted probabili-
ties and the actual class.

7. Parameter Update (Eq. 7): Represents the optimiza-
tion process, where the Adam optimizer is typically 
used to adjust the weights and biases to minimize the 
loss function.

Algorithm of the proposed model
Algorithm: PulmoNet for Pulmonary Disease Detection

Input: Set of labeled radiographic imaging data (X-rays/
CT scans)

Output: Disease classification (e.g., Healthy, Bacterial 
Pneumonia, Covid_19, Viral Pneumonia)

Begin

1. Data Collection:
– Collect diverse datasets of labeled images.

2. Data Preprocessing:

– Perform image augmentation to enhance dataset 
size and variability.

– Normalize images and convert to grayscale if neces-
sary.

– Split data into training, validation, and test sets.

3. Model Design (PulmoNet using CNN):

– Define a CNN architecture with layers suitable for 
image analysis.

– Apply convolutional layers with filters to extract 
features.

– Utilize activation functions like ReLU for non-line-
arity.

– Incorporate Wide Residual Blocks for deeper learn-
ing with fewer issues.

– Use Global Average Pooling to reduce dimensional-
ity.

– Add Fully Connected Layers for classification.
– Implement softmax activation for output layer 

probability distribution.

4. Model Training:

– Use categorical cross-entropy as the loss function.
– Apply Adam optimizer for efficient training.
– Train model using backpropagation and mini-batch 

gradient descent.

5. Model Evaluation:

– Evaluate model using accuracy, precision, recall, 
and F1 score on validation set.

– Adjust hyperparameters and model structure based 
on performance.

6. Model Testing:

– Test the final model on unseen data.
– Generate a confusion matrix to understand classifi-

cation performance.

End

Results and discussion
The outcomes of implementing the proposed approach 
for the 4 class, 3 class, and 2 class classifications are cal-
culated and presented. Performance of the model for 
each class after training and validation procedures are 
evaluated in terms of accuracy (acc), precision (prec), 
recall (rec), f1 score, and confusion matrix.

The suggested approach acc was calculated as the ratio 
of the sum of images categorized correctly by the model 
to the entire sum of all images. Mathematically,

Results of accuracy per class for all three (3) classes 
were presented in Table 1, 2, 3 and 4.

(8)Acc =
Number of images classified correctly

Total number of all images
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The tables in this section present the accuracy of the 
PulmoNet model in classifying pulmonary diseases 
across different class configurations. Table  2 presents 
the diagnostic accuracy of the PulmoNet model for four 
different classes based on the data. The diagnostic tool 
has exceptional precision in differentiating between 
various lung diseases, with a 95% accuracy rate for bac-
terial pneumonia, 93% for COVID-19, and 91% for viral 
pneumonia. The model demonstrates the highest level 
of precision in correctly identifying persons in good 
health, with an accuracy rate of 97%. The varied sam-
ples for each class show the model’s resilience across 
diverse dataset sizes, ranging from 131 for bacterial 
pneumonia to 1,548 for healthy.

The PulmoNet model has robust diagnostic accu-
racy for three categories, as shown in Table  3. The 
model accurately detects bacterial pneumonia in 95% of 
cases out of 131 samples, identifies COVID-19 in 96% 
of cases out of 561 samples, and correctly diagnoses 
healthy instances with an accuracy of 95.3% out of 395 
samples. This demonstrates consistent and dependable 
performance in both illness and healthy conditions, 
suggesting that the model might be efficiently used 
within these three categories for screening purposes.

Table  4 demonstrates the remarkable efficacy of 
the PulmoNet model in a binary classification test. It 
achieved a 99% accuracy in detecting COVID-19 from 
a dataset of 561 samples and an almost perfect accuracy 
of 99.8% in recognizing healthy patients from a dataset 
of 395 samples. These statistics indicate that the model 
is proficient in differentiating between COVID-19 and 
healthy lung conditions, demonstrating its potential as 
a highly dependable instrument for rapid screening in 
medical environments.

Table 5 displays the accuracy of the model in a binary 
classification test, specifically in differentiating between 
occurrences of pneumonia and healthy patients. The 
model has a remarkable discriminative ability in this 
binary classification scenario, accurately detecting 
pneumonia with a 97% precision from a sample size of 
131 and identifying healthy patients with a 99% preci-
sion from a sample size of 395.

As shown in the Tables, different prediction accuracy 
was recorded per class. In Table 2, our model recorded 
an accuracy of 97% for healthy, 95% for bacterial pneu-
monia, 93% for covid-19, and 91% for viral pneumonia 
in the 4-class classification. In Table 3, the accuracy for 
healthy images reduced to 95.3%, and that of covid_19 
improved to 96%, while that of bacterial pneumonia is 
95% for the 3-class classification. Tables 4 and 5 are for 
2 class classifications but for different class combina-
tions. It can be seen that accuracies of 99% and 99.8% 
were recorded for both covid_19 and healthy, while 97% 
and 99% were recorded for pneumonia and healthy.

Table 4 Accuracy per class (2 classes)

Class ACC Number 
of 
samples

Covid_19 99 561

Healthy 99.8 395

Table 5 Accuracy per class (2 classes)

Class ACC Number 
of 
samples

Pneumonia 97 131

Healthy 99 395

Fig. 5 Model Accuracy per epoch for 4 class classification

Fig. 6 Model Accuracy per epoch for 3 class classification
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To further demonstrate how well our model per-
formed, graphs of model accuracy and loss per epoch 
for each class classification are presented in Figs. 5, 6, 7, 
and 8. Furthermore, the confusion matrix for each class 
classification is also obtainable in Figs. 9, 10, 11, and 12. 
These Figures indicate that the suggested model is well-
trained without over-fitting or under-fitting, and this 

is further justified by the obtained results of precision, 
recall, and f1 score, respectively.

The Fig. 5 illustrates the accuracy trends across epochs 
throughout the training and validation phases of a deep 
learning model. The training accuracy (acc) is repre-
sented by the blue line, while the validation accuracy 

Fig. 7 Model Accuracy per epoch for 2 class classifications (Covid_19 and Healthy)

Fig. 8 Model Accuracy per epoch for 2 class classifications 
(Pneumonia and Healthy)

Fig. 9 Model loss per epoch for 4 class classification

Fig. 10 Model loss per epoch for 3 class classification

Fig. 11 Model loss per epoch for 2 class classifications (Covid_19 
and Healthy)
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(test acc) is shown by the orange line. Both accuracies 
exhibit fast improvement during the early epochs, sug-
gesting that the model is effectively acquiring knowledge 
from the data. The model reaches a state of convergence 
near the end, indicating that it no longer gains significant 
knowledge from further training. The proximity of the 
two lines indicates strong generalization, since the vali-
dation accuracy closely corresponds to the training accu-
racy, indicating that the model is not excessively fitting to 
the training data.

Figure  6  depicts the progression of a deep learning 
model’s performance throughout the training process 
over a fixed number of epochs for a job that involves clas-
sifying data into three distinct categories. The two lines, 
denoting training accuracy (acc) and validation accuracy 
(test acc) indicate the model’s proficiency in learning and 
generalizing to novel data. The elevated numbers suggest 
the model performs strongly on the training and unseen 
validation data. The precise alignment of the lines with 
minimal deviation indicates that the model does not 
excessively fit the data and has successfully acquired the 
ability to generalize the distinguishing characteristics of 
the three classes. This shows that the model is well-cali-
brated and has the potential to be dependable in a real-
world scenario for identifying the provided classes, which 
may include different types of pulmonary disorders.

Figure  7 illustrates the progression of a deep learning 
model in accurately classifying two classes. The accuracy 
trends for the training set (acc) and validation set (test 
acc) increase rapidly in the beginning epochs and sub-
sequently level off, remaining at high levels around 1.0, 
indicating almost flawless accuracy. This plateau dem-
onstrates that the model has successfully acquired the 
ability to differentiate between COVID-19 and healthy 
categories. The proximity between the training and 
validation accuracy suggests that the model effectively 
applies to unfamiliar data, a crucial attribute for reliable 
diagnostic tools in clinical environments.

Figure  8 displays the accuracy of a machine learning 
model during training (acc) and validation (test acc) as 
it learns to differentiate between pictures of lungs with 
pneumonia and healthy lungs. The training and valida-
tion accuracies of the model reach a high level and are 
stable early in the training phase, indicating a rapid 
capacity to learn and generalize. The consistent and 
steady accuracy in the training and validation phases sug-
gests that the model is appropriately calibrated and does 
not suffer from overfitting. This is crucial for ensuring 
the model’s reliability in real-world medical diagnostics. 
The graph indicates that the model has the potential to be 
a valuable tool for screening and diagnosing pneumonia 
based on radiographic data.

Figure  9 shows the loss of the model for the train-
ing data (loss) and validation data (test loss) across 50 
epochs. The blue line corresponds to the training loss, 
exhibiting an initial steep decrease, demonstrating rapid 
learning during the earliest phases of model training. 
Subsequently, the data stabilizes, indicating that the 
model is approaching a point of minimal loss.

The orange line, which represents the validation loss, 
exhibits more volatility. The variability observed may 
signify that the model is facing challenges in effectively 
applying its learned knowledge to the validation dataset. 
This might potentially indicate overfitting if the pattern 
persists or becomes more pronounced. Nevertheless, 
given there is no significant rise in validation loss over 
time, it seems that the model can maintain its capac-
ity to generalize rather well. The objective is to reduce 
the disparity between the training and validation loss, 
which signifies a model that exhibits effective learning 
and generalization capabilities towards novel, unob-
served input.

Figure 10 illustrates the progression of a model’s train-
ing in categorizing data into three distinct groups. The 
training loss, shown by the blue line, exhibits a rapid 
decline followed by a period of stability. This character-
istic pattern indicates that the model efficiently acquires 
knowledge from the training data. The test loss, shown by 
the orange line, declines in parallel with the training loss 
but displays intermittent variations, which may be attrib-
uted to the model’s performance on the validation data-
set. The graph demonstrates a learning process in which 
the model effectively adapts to the training data and 
maintains a satisfactory performance on the validation 
data that has not been previously observed. This pattern 
is beneficial as it indicates that the model has successfully 
acquired generalizable patterns from the data without 
suffering from overfitting.

Figure  11 illustrates the progression of training loss 
and validation loss during 50 epochs during the training 
of a machine learning model. The training loss, shown by 

Fig. 12 Model loss per epoch for 2 class classifications (Pneumonia 
and Healthy)
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the blue line, exhibits a sharp decrease, suggesting fast 
acquisition of knowledge, and then stabilizes, indicating 
that the model has begun to reach a state of convergence. 
Nevertheless, the validation loss (shown by the orange 
line) displays instability and a notable sudden increase, 
suggesting the presence of an abnormality in the valida-
tion data or the possibility of overfitting at that particular 
time. However, the validation loss consistently decreases, 
indicating that the model maintains good generalization 
to new data even after the first spike. Such training aims 
to ensure that the validation loss drops in parallel with 
the training loss, reducing the disparity between them. 
This indicates a model consistently performing well on 
familiar and unfamiliar data.

Figure 12 illustrates the loss measure of a deep learn-
ing model throughout 50 epochs. The blue line shows 
the training loss offers a substantial decline after the 
early epochs, indicating the model’s rapid learning pro-
gress. Subsequently, it reaches a stable state, suggest-
ing the model is approaching a minimum loss. The test 
loss, shown in orange, initially shows a similar drop but 
is distinguished by intermittent spikes that indicate fluc-
tuations in the model’s performance on the validation set. 
Following spikes, the test loss becomes stable, although 
it does not reach the same level as the training loss. This 
implies that the model may not effectively adapt to new 
data, indicating a potential lack of generalization. This 
may mean more adjustments to enhance the model’s abil-
ity to apply to various situations or examine the data to 
comprehend the cause of instability.

Furthermore, prec, rec, and f1 score for each class clas-
sification are also calculated as follows [58]:

1. Precision (Prec): This is another model perfor-
mance evaluation metric employed in this study. It 
can be defined as the quantification of the “True 
Positive” (TP) results predicted by the model. It is 
expressed as:

where TP signifies true positive and FP signifies false 
positive

2. Recall (Sensitivity): Recall is the metric that measures 
how sensitive a predictive model performs. It meas-
ures the proportion of the positive instances that 
are truly predicted as positive. It is usually expressed 
as:where TP implies true positive, and FN signifies 
false negative

(9)Precision =
TP

TP + FP
× 100%

3. F1-Score: F1-Score is a metric that expresses stability 
between Prec and Rec. It is the harmonic average of 
both Rec and Prec.

 F1-score is expressed as:

The average prec, rec, and f1 scores for each class clas-
sification are obtainable in Table  6. Table  6 presents a 
concise overview of the performance indicators of the 
PulmoNet model in several categorization situations. The 
model demonstrates a notable equilibrium between accu-
racy (94%) and recall (95.01%) in the 4-class classification, 
indicating its proficiency in accurately detecting affirma-
tive instances within the four categories. The model has a 
commendable accuracy (90.52%) and F1 score (88.65%), 
suggesting its strong performance. However, there is 
potential for improvement in achieving a better equilib-
rium between precision and recall.

In the case of the 3-class scenario, the model demon-
strates enhancement in all measures, notably achieving a 
recall of 98.54% and an F1 score of 97.34%. These results 
indicate a remarkable level of model sensitivity and a 
well-balanced precision-recall trade-off.

The model performs exceptionally in binary classifica-
tions, with accuracy, precision, recall, and F1 scores over 
98%. This implies that when the model is given the duty 
of differentiating between just two categories, its capacity 
to recognize and categorize each one accurately is quite 
dependable.

Figure  13 visually illustrates the accuracy of the Pul-
moNet model in categorizing instances as Bacterial 
Pneumonia, COVID-19, Viral Pneumonia, or Healthy. 
The matrix displays the quantity of forecasts generated 
by the model compared to the actual categories. Specifi-
cally, the cases anticipated to be Bacterial Pneumonia 125 

(10)Recall =
TP

TP + FN
× 100

(11)F1 score = 2×
Precision× Recall

Precision+ Recall

Table 6 Average acc, prec, rec, and f1 scores for each class 
classification

Model classification ACC (%) PREC REC F1 Score

4 Class 94 90.52 95.01 88.65

3 Class 95.40 95.15 98.54 97.34

2 Class (Covid_19 and Healthy) 99.4 98.86 99.41 98.46

2 Class (Pneumonia and Healthy) 98.3 99.12 99.01 99.24



Page 13 of 19Abdulahi et al. BMC Medical Imaging           (2024) 24:51  

were accurately diagnosed, whereas a small number of 
cases were mistakenly labeled as Covid_19, Viral Pneu-
monia, or Healthy. Likewise, a significant proportion of 
Covid_19 cases were correctly categorized, although 
there was some ambiguity in distinguishing them from 
healthy instances. Some misdiagnosis is seen in cases of 
Viral Pneumonia, especially regarding Healthy individu-
als. The Healthy class has the most significant number of 
accurate classifications, showing a robust capability of the 
model to identify persons in good health, but with some 
occasional misunderstanding with other illness states. 
The matrix is essential for comprehending the model’s 
diagnostic capabilities and identifying areas needing 
refinement.

The confusion matrix shown in Fig.  14 illustrates the 
model’s efficacy in differentiating between the Bacterial 
Pneumonia, Covid-19, and Healthy classes in a 3-class 
classification scenario. The matrix demonstrates high 
precision in categorizing Covid-19, with 536 accurate 
forecasts and only a minimal number of instances mis-
classified as Bacterial Pneumonia or Healthy. Bacterial 

Pneumonia has a high accuracy rate of categorization 
(125 out of 131) but with significant misclassification in 
the Healthy group. The Healthy class has a high level of 
accuracy, with 373 correct predictions. However, there 
are a few situations when Healthy occurrences are incor-
rectly labelled as Bacterial Pneumonia or Covid-19. This 
graphic facilitates comprehension of the model’s diagnos-
tic precision and may inform enhancements in the accu-
racy of predictions for certain classes.

Figure  15 displays the results of categorizing samples 
into either the COVID-19 or Healthy classes. The dark 
blue squares on the diagonal indicate accurate categori-
zations, consisting of 522 instances correctly identified 
as COVID-19 positive and 380 samples correctly identi-
fied as Healthy negative. The lighter blue squares indicate 
misclassifications, composed of 39 false negatives, where 
COVID-19 patients were erroneously categorized as 
Healthy, and 15 false positives, where Healthy cases were 

Fig. 13 Confusion matrix for 4 class classification

Fig. 14 Confusion matrix for 3 class classification

Fig. 15 Confusion matrix for 2 class classifications (Covid_19 
and Healthy)

Fig. 16 Confusion matrix for 2 class classifications (Pneumonia 
and Healthy)
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wrongly recognized as COVID-19. The elevated values 
along the diagonal indicate a robust model efficacy in dif-
ferentiating COVID-19 patients from healthy persons.

Figure  16 illustrates a confusion matrix for a binary 
classification issue that distinguishes between instances 
of pneumonia and healthy individuals. The matrix accu-
rately identifies 127 pneumonia and 391 cases of healthy 
controls by the model, as seen by the substantial num-
bers along the diagonal from the top left to the bottom 
right. The occurrence of misclassification is minimal, 
with a mere four instances of pneumonia being errone-
ously labelled as healthy and four healthy cases misclassi-
fied as pneumonia. The matrix exhibits notable accuracy 
and precision in the model’s predictions, demonstrating a 
well-balanced performance across both classes.

Figures  13, 14, 15 and 16 shows the confusion matrix 
of the classifications such as 4 class, 3 class, and 2 classes. 
In summary, the suggested technique realized an aver-
age accuracy of 94%, 95%, 95%, and 98% for 4 classes, 3 
classes, 2 classes (Covid_19 and Healthy), and 2 classes 
(Pneumonia and Healthy) classifications. Prec, rec, and 
f1 score values recorded for each class show good perfor-
mance of the model as a higher recall value indicates an 
encouraging low false negative case.

Experimental outcomes attained by the suggested 
technique are further likened to some selected related 
research conducted in the past. This is done to vali-
date further the experimental outcomes realized by our 
model. A summary of the comparative investigation is 
obtainable in Table 7.

Table 7 displays a comparative examination of perfor-
mance measures for different models in various class 
classification tasks. PulmoNet demonstrates exceptional 
performance, especially in the 2-class classifications for 
COVID-19/Healthy and Pneumonia/Healthy, achieving 
accuracies of 98%. This demonstrates PulmoNet’’s par-
ticular aptitude in binary categorizations. Furthermore, 
it shows strong competitiveness in multi-class settings, 
exhibiting performance measures equivalent or supe-
rior to those of other models. This suggests its resilience 
and ability to generalize. This comparison highlights the 
potential of PulmoNet as a dependable tool in clinical 
settings for diagnosing lung illnesses.

As presented in the table, the performance accu-
racy of Khan et al., [53] is 89.6% for 4 classes, 95% for 3 
classes, and 99% for two classes (covid_19 and healthy) 
classifications and (Hussain et  al. [59] recorded 91.2%, 
94.2%, and 99.1% respectively for 4 class, 3 class, and 2 
class (covid_19 and healthy) classifications compared to 
94%, 95.4%, 99.4% obtained by PulmoNet for 4 class, 3 
class, and 2 class (covid_19 and healthy) classifications. 

Another point worthy of mention here is the second 2 
class (pneumonia and healthy) classification which is not 
reported by both Khan et al., [53] or Hussain et al., [59] in 
their works. This class classification recorded an accuracy 
of 98.3% in this work. Finally, higher precision, recall, and 
f1 score recorded by our work in most class classifica-
tions indicate better performance by our model.

The study key findings
The study on the PulmoNet model represents a signifi-
cant advancement in the application of artificial intel-
ligence for the diagnosis of pulmonary diseases. The 
model’s performance was rigorously evaluated across 
various classification scenarios, yielding insightful 
results that demonstrate its efficacy and potential clini-
cal applicability.

Performance in multi-class and binary classifications:

• 4-Class Configuration (Table  2): PulmoNet exhib-
ited high diagnostic accuracy across different pul-
monary diseases and healthy states. Specifically, it 
achieved 95% accuracy for bacterial pneumonia, 
93% for COVID-19, 91% for viral pneumonia, and 
an impressive 97% for healthy cases. These results 
underscore the model’s capability to accurately dis-
tinguish between complex disease categories, a cru-
cial requirement in clinical diagnostics.

• 3-Class Configuration (Table  3): The model main-
tained consistent performance, particularly show-
ing improvement in COVID-19 detection (96% 
accuracy). This indicates the model’s adaptability 
and precision in scenarios with fewer classification 
categories.

• Binary Classifications (Tables  4 and 5): In binary 
classifications, PulmoNet demonstrated excep-
tional accuracy, especially notable in distinguish-
ing COVID-19 (99% accuracy) and healthy cases 
(99.8% accuracy). Such high performance in binary 
classifications suggests the model’s potential utility 
in preliminary screening and rapid diagnostics.

Comparative Analysis with Existing Models:

• Comparative Evaluation (Table 7): When compared 
with other studies (Khan et al., Hussain et al.), Pul-
moNet showed competitive or superior perfor-
mance in several aspects. This comparison not only 
validates the effectiveness of PulmoNet but also 
positions it as a potential benchmark in the field of 
AI-driven pulmonary disease detection.
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Training and Validation Insights:

• Model Training Dynamics (Figs. 5, 6, 7 and 8): The 
accuracy and loss graphs for each class configura-
tion provided insights into the model’s training 
dynamics. The close alignment of training and vali-
dation accuracy indicates that PulmoNet is well-
trained, effectively learning from the training data 
without overfitting.

• Confusion Matrix Analysis (Figs. 13, 14, 15 and 16): 
The confusion matrices for each classification task 
offer a detailed view of the model’s diagnostic accu-
racy, illustrating its strengths in correctly identify-
ing cases and areas where improvements could be 
made.

Clinical Implications and Future Directions:

• Clinical Relevance: The high accuracy and reliability 
of PulmoNet suggest its significant potential in clini-
cal environments for enhancing diagnostic proce-
dures for pulmonary diseases.

• Future Enhancements: Acknowledging the limita-
tions regarding dataset diversity and size, future 
studies are planned to test the model on a larger and 
more varied dataset. This will help in further validat-
ing the model’s robustness and generalization capa-
bilities.

In summary, the PulmoNet model, through this study, 
demonstrates promising capabilities in revolutioniz-
ing AI-driven illness diagnosis, particularly in the realm 
of pulmonary diseases. Its high accuracy across various 
class configurations and strong performance compared 
to existing models highlight its potential as a valuable 
tool in medical diagnostics. Future enhancements and 
broader clinical testing are anticipated to further solidify 
its applicability and effectiveness in healthcare settings.

Discussion
The PulmoNet model demonstrated exceptional perfor-
mance in a 4-class classification task, with accuracies of 
97% for healthy cases, 95% for bacterial pneumonia cases, 
93% for COVID-19 cases, and 91% for viral pneumonia 
cases. The accuracies for the three classes in a 3-class 
configuration were as follows: 95.3% for healthy, 96% for 
COVID-19, and 95% for bacterial pneumonia. The model 
attained a 99% accuracy for classifying COVID-19 cases 
and a 99.8% accuracy for classifying healthy cases in a 
2-class classification task, demonstrating its proficiency 
in binary classifications. The measurements, including 

accuracy, recall, and f1-scores, highlight the promise of 
PulmoNet in revolutionizing AI-driven illness diagnosis 
and its suitability in clinical environments.

The PulmoNet model demonstrated remarkable pre-
cision in identifying lung illnesses in different catego-
rization circumstances. The system’s performance in a 
4-class configuration was outstanding, with excellent 
accuracy rates for each illness category, notably excelling 
in binary classifications. The model’s resilience was fur-
ther validated by crucial performance indicators such as 
accuracy, recall, and f1-score, vital for minimizing incor-
rect diagnoses in medical environments.

PulmoNet exhibited more incredible skills than current 
models, indicating the potential to redefine AI-driven 
pulmonary illness identification benchmarks. The train-
ing and validation procedure, as shown by the balanced 
accuracy and loss graphs and confusion matrices, sug-
gested a proficiently trained model without any problems 
of overfitting or underfitting.

These findings emphasize the significant influence of 
artificial intelligence (AI) and deep learning in medical 
diagnosis, especially for pulmonary illnesses. The high 
accuracy and dependability of PulmoNet make it very 
applicable in clinical settings, where it can potentially 
improve diagnostic processes and patient outcomes. 
Potential advancements may enhance the model, expand 
its clinical use, and enhance healthcare diagnostics.

Limitations of the study
The study’s limitation mostly pertain to the dataset and 
methodology. The dataset, sourced from many pub-
lic sources, may lack the necessary diversity and size to 
guarantee the model’s generalisation capacity across dif-
ferent populations. Furthermore, the model explicitly 
targets three distinct lung disorders, potentially restrict-
ing its relevance to other respiratory ailments. The exclu-
sive dependence on X-ray and CT scan pictures may also 
provide problems since these imaging modalities include 
inherent limits. Additionally, the research necessitates 
clinical validation to evaluate the real-time applicability 
and efficacy in realistic healthcare environments. Pros-
pects include investigating picture segmentation and 
hyperparameter adjustment to improve accuracy.

Conclusions
Ever since the COVID-19 pandemic broke out in late 
2019, pulmonary diseases—which are already the third 
biggest killer on Earth—have been a major problem for 
public health throughout the planet. Because of this, 
finding reliable diagnostic tools quickly is more impor-
tant than ever. This paper presents PulmoNet, a state-of-
the-art deep learning (DL) model that uses radiographic 
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images like X-rays and CT scans to improve the diagno-
sis of a range of pulmonary disorders, including bacterial 
pneumonia, COVID-19, and viral pneumonia.

A dataset consisting of thousands of photos taken from 
freely accessible databases was heavily used to build 
PulmoNet—the extensive dataset allowed for thorough 
model training, guaranteeing its efficacy in many diag-
nostic situations. Compared with two other popular 
methods, PulmoNet performed far better in accuracy, 
precision, recall, and f1-score. A promising diagnostic 
tool, PulmoNet showed remarkable competence in both 
multi-class and binary classifications.

The relevance of PulmoNet is that it can provide 
healthcare providers with a significant tool for under-
standing lung disorders, including COVID-19, and 
making correct diagnoses promptly. Offering a solu-
tion to the urgent demand for effective illness detec-
tion techniques in the face of recurring health crises, its 
excellent accuracy in diagnosing numerous lung disor-
ders represents a considerable contribution to medical 
diagnostics.

The research finds several ways to improve Pulmo-
Net’s effectiveness in the future. To further enhance 
accuracy in 4 and 3 class setups, future research will 
concentrate on investigating supplementary approaches 
like as picture segmentation and hyperparameter tun-
ing. Plans are also in the works for the model’s special-
ist clinical testing and validation, which will guarantee 
its dependability and practicality. These procedures 
are essential for bringing the model into practical use, 
where it may greatly assist in dealing with the diffi-
culties caused by lung disorders. As a result of these 
planned developments, PulmoNet should become an 
even more effective weapon in the fight against pulmo-
nary disorders, which should lead to improved health-
care results on a worldwide scale.

In the future we have proposed to test our model on a 
more extensive dataset. This will help to further evaluate 
the model’s generalization capabilities and ensure that it 
maintains high accuracy and reliability when exposed to 
a broader range of data. We have also propose re-evalu-
ating the models using a standard dataset or delineating 
the differences in test sets and settings when discussing 
the results.
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