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Abstract 

Background Medullary Thyroid Carcinoma (MTC) is a rare type of thyroid cancer. Accurate prediction of lateral 
cervical lymph node metastases (LCLNM) in MTC patients can help guide surgical decisions and ensure that patients 
receive the most appropriate and effective surgery. To our knowledge, no studies have been published that use 
radiomics analysis to forecast LCLNM in MTC patients. The purpose of this study is to develop a radiomics combined 
with thyroid imaging reporting and data system (TI-RADS) model that can use preoperative thyroid ultrasound 
images to noninvasively predict the LCLNM status of MTC.

Methods We retrospectively included 218 MTC patients who were confirmed from postoperative pathology 
as LCLNM negative (n=111) and positive (n=107). Ultrasound features were selected using the Student’s t-test, 
while radiomics features are first extracted from preoperative thyroid ultrasound images, and then a two-step feature 
selection approach was used to select features. These features are then used to establish three regularized logistic 
regression models, namely the TI-RADS model (TM), the radiomics model (RM), and the radiomics-TI-RADS model 
(RTM), in 5-fold cross-validation to determine the likelihood of the LCLNM. The Delong’s test and decision curve analy-
sis (DCA) were used to evaluate and compare the performance of the models.

Results The ultrasound features of margin and TI-RADS level, and a total of 12 selected radiomics features, were sig-
nificantly different between the LCLNM negative and positive groups (p<0.05). The TM, RM, and RTM yielded an aver-
aged AUC of 0.68±0.05, 0.78±0.06, and 0.82±0.05 in the 5-fold cross-validation dataset, respectively. RM and RTM are 
statistically better than TM (p<0.05 and p<0.001) according to Delong test. DCA demonstrates that RTM brings more 
benefit than TM and RM.
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Conclusions We have developed a joint radiomics-based model for noninvasive prediction of the LCLNM in MTC 
patients solely using preoperative thyroid ultrasound imaging. It has the potential to be used as a complementary 
tool to help guide treatment decisions for this rare form of thyroid cancer.

Keywords Artificial intelligence, Radiomics, Medullary thyroid carcinoma, Ultrasound, Lateral cervical lymph node 
metastases

Background
Medullary Thyroid Carcinoma (MTC) is a rare type of 
thyroid cancer [1], accounting for 1%-2% of all thyroid 
cancers [2]. It has a higher propensity for lateral cervi-
cal lymph node metastases, accounting for 70% [3] of 
cases, as compared to other types of thyroid cancer. 
The American Thyroid Association (ATA) guidelines 
recommend surgery as the first-line therapy for defini-
tive cure in MTC patients [4]. The standard surgical 
therapy for MTC typically includes total thyroidectomy 
and lymphadenectomy. However, the extent of cervical 
lymph node dissection is still a matter of debate, par-
ticularly regarding lateral cervical lymph node dissec-
tion [5–7]. The surgery decision making can affect the 
prognosis of MTC patients. Therefore, it is particularly 
important for preoperative assessment for lateral cervi-
cal lymph node metastases (LCLNM) in such patients.

Thyroid ultrasound is the first choice and a useful tool 
for diagnosing thyroid disease [6]. The Thyroid Imaging 
Reporting and Data System (TI-RADS) has been used 
as a standard method for the classification of thyroid 
nodules [8]. Due to its ease of use and clinical viability, 
TI-RADS has drawn considerable attention. The appli-
cability of ultrasound-based TI-RADS in MTC patients 
has been evaluated and the relationship between ultra-
sound features and lymph node metastases has been 
assessed [9]. However, TI-RADS results are usually 
affected by the experience of reviewers in most cases, 
and information from ultrasound imaging has not been 
fully explored, at present only relying on the naked eye.

Radiomics can extract quantitative features from 
medical images that may reflect information about 
underlying pathophysiology that is not visible to the 
human eye [10]. In recent years, there have been 
numerous studies that highlight the emerging field of 
utilizing medical images with radiomics, combined 
with machine learning and deep learning to enhance 
the understanding and treatment of thyroid cancers, 
by providing personalized and detailed insights into 
tumor development [11–13]. Biomarkers based on 
quantitative radiomics and deep learning features from 
preoperative thyroid ultrasound have demonstrated 
promising outcomes for predicting distant metastases 
in follicular thyroid carcinoma [14], predicting thyroid 

malignancy [15–17], and predicting lymph nodes status 
of patients with papillary thyroid carcinoma [18–22].

Accurate prediction of LCLNM status in MTC patients 
can help guide surgical decisions and ensure that patients 
receive the most appropriate and effective surgery. To our 
knowledge, no studies have been published that use radi-
omics analysis to forecast LCLNM in MTC patients. The 
purpose of this study is to develop a separate biomarker 
which is radiomics-based for noninvasively predicting 
the LCLNM status of MTC using preoperative thyroid 
ultrasound images.

Methods
Patient selection and data acquisition
We retrospectively collected the patients with pathologi-
cally confirmed MTC between January 2010 and Febru-
ary 2022 at our medical center. Patients were included 
in this study if they: (1) received preoperative thyroid 
ultrasound with satisfactory image quality; (2) underwent 
initial surgical therapy in our medical center; (3) had 
complete medical records. A total of 218 eligible MTC 
patients were consecutively included and reviewed as 
shown in Fig. 1.

The age at diagnosis and sex, as well as the ultrasound 
features from American College of Radiology (ACR) TI-
RADS and surgical pathology report were retrieved from 
electronic medical records. Table  1 shows an overview 
of patient characteristics. The LCLNM status (negative, 
N0/N1a or positive, N1b) were confirmed by surgical 
pathology.

Ultrasound images acquisition and preprocessing
One of four ultrasound scanners (GE logic 9-General 
Electric Company, USA; GE logic E9-General Elec-
tric Company, USA; Philips IU 22-Royal Dutch Philips 
Electronics Ltd, the Netherlands; and Siemens Acu-
son S2000-Siemens AG FWB:SIE, Germany) with a 5 to 
12 MHz high-frequency linear transducer was used to 
screen thyroid pathologies. The patient was in a supine 
position while the thyroid gland was examined using a 
multi-section scan from the front of the neck. Ultrasound 
data (Table  1) included nodule composition, echogenic-
ity, shape, margin, and echogenic foci. Two radiologists 
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with 5 and 25 years of thyroid nodule diagnosis expertise 
blindly reviewed and recorded each patient’s features. 
When two reviewers disagreed during valuation, a col-
laborative review was done and consensus values were 
used for statistical analysis.

A single ultrasound image that can represent the focus 
most comprehensively was selected for each tumor 
among all the images and then loaded into 3D Slicer soft-
ware for manual segmentation. A region of interest (ROI) 
was manually delineated at the boundary of each primary 
tumor by one experienced radiologist. Then, the ultra-
sound images were cropped by using the ROI boundary 
box to remove useless information from the ultrasound 
images. Ultrasound images were normalized using the 
linear min-max normalization method:

Hence, the pixel intensity should range from 0 to 255. 
Figure 2(A) shows the ultrasound image preprocessing.

Feature extraction, feature selection and modeling
Radiomics feature extraction and selection
Figure 2(B) and (C) present the process of feature extrac-
tion and feature selection. We extracted a total of 464 

(1)Inormalized =
255× (Ioriginal −min Ioriginal )

max Ioriginal −min(Ioriginal)

radiomics features using an open-source python pack-
age for the extraction of radiomics features from medi-
cal imaging (PyRadiomics) [23]. These features derived 
from original image and wavelet image (applying either 
a high or a low pass filter in each of the two dimensions 
to the original image and yields 4 decompositions per 
level) including the first order statistics (18x5 features), 
shape-based two dimension (9x1 features), gray level co-
occurence matrix (GLCM, 22x5 features), gray level run 
length matrix (GLRLM, 16x5 features), gray level size 
zone matrix (GLSZM, 16x5 features), neighbouring gray 
tone difference matrix (NGTDM, 5x5 features), and gray 
level dependence matrix (GLDM, 14x5 features).

A two-step feature selection strategy was used to 
reduce the dimensions of the radiomics features. Con-
sidering that the radiomics features are continuous 
variables with a normal distribution, a Student’s t-test 
was first employed to identify features strongly asso-
ciated with LCLNM status. The Student’s t-test is a 
parametric test that is used to determine if variables 
in two independent groups have the same distribution. 
Statistical significance was defined as p-value < 0.05. A 
total of 238 features that showed a statistically signifi-
cant difference were retained for the subsequent feature 
selection. Next, we further selected radiomics fea-
tures using the least absolute shrinkage and selection 

Fig. 1 Flowchart of the study population
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operator (LASSO) approach, which is a penalized vari-
able selection method appropriate for the regression of 
high-dimensional data. Since we used 5-fold cross-val-
idation, the radiomics features we selected varied from 
fold-to-fold. We select radiomics features with a prob-
ability of occurrence greater than 60% in 5-fold training 
dataset. The details of LASSO approach for selecting 

features are presented in Supplementary Material 1 
(including Supplementary Table  1 and Supplementary 
Figures 1-10).

Model development and validation
Figure 2(D) shows the modeling process. Given the small 
sample and lack of external validation data, we utilized 
5-fold cross-validation to split our data into training and 
test datasets to reduce the bias and risk of overfitting. 
Namely, the MTC patients were randomly divided into 
five equal parts, and the regularized logistic regression 
model was trained only on four parts (training dataset) 
and tested on the remaining part (test dataset). The prob-
ability of the LCLNM positive class P

(
yi = 1|Xi

)
 is as 

following:

where yi takes values in the set {0, 1} for the i th patient, 
Xi is features, and ω and ω0 are feature coefficients and 
intercept. The optimization process is to minimize a cost 
function:

where r(ω) is the regularization penalty term and there 
are four choices as presented in Supplementary Table 2, 
and C is the factor to adjust the inverse of regulariza-
tion strength, and the regularization has the benefit of 
increasing stability.

For comparison, we established three models using the 
ultrasound features from TI-RADS, the radiomics features 
from preoperative thyroid ultrasound images, and the 
radiomics features combined with TI-RADS, respectively. 
The three models were separately denoted as TI-RADS 
model (TM), radiomics model (RM), and radiomics com-
bined with TI-RADS model (RTM). The above features 
went through the feature selection and standard-scaled 
steps before being inputted into the models. In parallel, we 
computed a radiomics score for each patient based on a 
linear combination of the radiomics features weighted by 
their coefficients from RM when building RTM.

The hyperparameters for the model included optimizer, 
regularization penalty term ( r(ω) ) and inverse of regular-
ization strength ( C ). The optimization algorithm of ‘lbfgs’ 
was used as optimizer. The l_2 regularization term is 
applied as penalty. The inverse of regularization strength 
C is set to 1. The tolerance for stopping criteria is 1e-4. 
The maximum number of iterations taken for the solvers 
to converge is 1000.

(2)p̂(Xi) =
1

1+ exp(−Xiω − ω0)

(3)minC

n∑

i=1

(−yilog
(
p̂(Xi)

)
− (1− yi)log(1− p̂(Xi)))+ r(ω)

Table 1   Patient characteristics of the 218 patients in medullary 
thyroid carcinoma (MTC) with lateral cervical lymph node 
metastases (LCLNM) negative (N0/N1a) and positive (N1b)

a Data are presented as medians with ranges in parentheses
b Data in parentheses are percentages

Characteristics LCLNM 
negative 
(n=111)

LCLNM 
positive 
(n=107)

p-Value

Age (years)a 49 (13~78) 50 (21~75) 0.995

Sexb <0.001
 Male 39 (35.1) 63 (58.9)

 Female 72 (64.9) 44 (41.1)

ACR TI-RADS
  Compositionb 0.222

  Cystic or Spongiform 0 (0.0) 0 (0.0)

  Mixed cystic and nodule 11 (9.9) 5 (4.7)

  Solid 100 (90.1) 102 (95.3)

  Echogenicityb 0.491

  Anechoic 0 (0.0) 0 (0.0)

  Hyperechoic or isoechoic 3 (2.7) 2 (1.9)

  Hypoechoic 89 (80.2) 80 (74.8)

  Very hypoechoic 19 (17.1) 25 (23.4)

  Shapeb 0.392

  Wider-than-tall 105 (94.6) 97 (90.7)

  Taller-than-wide 6 (5.4) 10 (9.3)

  Marginb <0.001
  Smooth or Ill-defined 22 (19.8) 7 (6.5)

  Lobulated or Irregular 87 (78.4) 69 (64.5)

  Extra-thyroidal extension 2 (1.8) 31 (29.0)

 Echogenic  Focib 0.393

  None or Large comet-tail 
artifacts

49 (44.1) 38 (35.5)

  Macrocalcifications 41 (36.9) 48 (44.9)

  Peripheral(rim) calcifica-
tions

0 (0.0) 0 (0.0)

  Punctate echogenic foci 21 (18.9) 21 (19.6)

 TI-RADS  Levelb 0.016
  TR1 0 (0.0) 0 (0.0)

  TR2 1 (0.9) 0 (0.0)

  TR3 5 (4.6) 0 (0.0)

  TR4 35 (31.5) 22 (20.6)

  TR5 70 (63.1) 85 (79.4)
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As we adopted 5-fold cross-validation, the process 
of feature selection, model training, and testing steps is 
repeated five times so that each part is given a chance to 
be the independent test dataset. The analysis described 
above was implemented in Python software (version 3.8) 
with scikit-learn package (version 1.1.2).

Model evaluation and statistical analysis
The performance of the model was evaluated by quanti-
tative indexes including the area under the receiver oper-
ating characteristic (ROC) curve (AUC), accuracy (ACC), 
sensitivity (SEN), specificity (SPE), positive predictive 
value (PPV), negative predictive value (NPV), Matthew’s 
correlation coefficient (MCC) and F1 score (F1), which 
are described in Supplementary Material 2.

MTCs with LCLNM negative and positive were com-
pared based on patient demographic information. The 
Student’s t-test was used to determine whether there was 
any statistical difference in these features. A two-sided 
p-value < 0.05 was used as the criterion to indicate a sta-
tistically significant difference. Delong’s test was used to 
test whether there is a statistical difference in LCLNM 
status prediction for different models.

The decision curve analysis (DCA) was used to test the 
clinical usefulness of the regularized logistic regression 
model in LCLNM status prediction. The net benefit of the 
LCLNM positive group can be calculated as following:

where TP is the number of LCLNM positive patients cor-
rectly identified as LCLNM positive, FP is the number 
of LCLNM positive patients identified as LCLNM nega-
tive, n is the total number of patients, Pt is the probability 

(4)Net benifit treated =
TP

n
−

FP

n

Pt

1− Pt

threshold. The details can refer to Supplementary Mate-
rial 3. The analysis described above was also imple-
mented in Python software (version 3.8).

Results
Patient characteristics
We present in Table  1 the demographic information of 
MTC patients with LCLNM negative and positive. Of the 
enrolled 218 MTC patients (Fig.  1), there were 111 (per-
centage of 50.5%; median age:49, range:13-78; number of 
male&female:39&72) patients with LCLNM negative and 
107 (percentage of 49.5%; median age:50, range:21-75; num-
ber of male&female:63&44 ) with LCLNM positive. There 
were no significant differences between MTC patients with 
LCLNM negative and positive in age, preoperative ultra-
sound features of composition, echogenicity, shape, and 
echogenic foci (all p>0.05). Of the preoperative ultrasound 
features, smooth or ill-defined margin were more frequent 
in MTC patients with LCLNM negative while extra-thyroi-
dal extension margin was more frequent in MTC patients 
with LCLNM positive (p<0.001). TI-RADS level were signif-
icant differences between MTC patients in LCLNM nega-
tive group and positive group (p<0.05), and MTC patients 
in LCLNM positive had higher incidences of TI-RADS level 
(TR5) compared to MTC patients in LCLNM negative.

Selected features and their importance
For TM, the ultrasound features of margin and TI-RADS 
level (p<0.05) was selected using the Student’s t-test and 
used to establish the model. The coefficients and inter-
cept of the TM in 5-fold cross-validation were summa-
rized in Supplementary Table 3. The feature of margin is 
the most crucial component in TM.

Fig. 2 Workflow of a radiomics approach for prediction of lateral cervical lymph node metastases (LCLNM) in medullary thyroid carcinoma 
from preoperative thyroid ultrasound. A Preprocessing of thyroid ultrasound images included manual segmentation, cropping and normalization. 
B Radiomics features were extracted from preprocessed thyroid ultrasound images. C A two-step method of Student’s t-test and least absolute 
shrinkage and selection operator (LASSO) regression were used to select features for modeling. D A regularized logistic regression model 
was developed and validated in 5-fold cross-validation to predict the LCLNM status
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For RM, a total of 464 radiomics features from preopera-
tive ultrasound imaging was first reduced to 238 (p<0.05) 
using the Student’s t-test, and further reduced to 12 final 
selected radiomics features using the LASSO approach 
(the details can refer to Supplementary Material 1). Table 2 
demonstrated the final selected radiomics features and 
their significant differences between LCLNM negative and 

LCLNM positive groups. We established the RM using the 
final selected radiomics features. The coefficients and inter-
cept of the RM in 5-fold cross-validation were summarized 
in Supplementary Table 4. Since the coefficients of different 
features can reflect the feature importance, we summarized 
the selected radiomics feature importance (averaged coef-
ficients of 5-fold cross-validation) as shown in Fig. 3. The 

Table 2 Final selected radiomics features and the significant differences of the medullary thyroid carcinoma patients between lateral 
cervical lymph node metastases (LCLNM) negative and LCLNM positive. Data are presented as medians with ranges in parentheses

Final radiomics features LCLNM negative (n=111) LCLNM positive (n=107) p-Value

First order statistics
 wavelet-HL_firstorder_Median 4.2e-2 (-7.1e-2~0.3) 3.1e-2 (-8.5 e-2~0.1) <0.001
 wavelet-HL_firstorder_Skewness -2.7e-2 (-14.3~14.4) 0.2 (-10.9~24.1) 0.017
Shape-based features
 original_shape2D_MinorAxisLength 145.9 (42.4~550.0) 220.3 (53.1~555.4) <0.001
GLCM
 wavelet-LL_glcm_Imc2 0.98 (0.91~1) 0.98 (0.89~1) 0.042
 wavelet-HH_glcm_ClusterProminence 0.5 (0.5~47.4) 0.6 (0.5~19.1) 0.005
 wavelet-LL_glcm_ClusterShade 142.8 (-68.4~1303.6) 103.7 (-213.2~1018.4) 0.029
GLSZM
 original_glszm_SizeZoneNonUniformity 20.5 (1.9~122.5) 40.7 (3.6~440.9) <0.001
 wavelet-LH_glszm_ZoneEntropy 5.8 (4.3~6.6) 6.0 (4.4~6.6) <0.001
 original_glszm_SmallAreaLowGrayLevelEmphasis 2.8e-02 (0.3e-2~0.1) 3.6e-2 (0.6e-2~0.1) 0.010
 waveletLL_glszm_SizeZoneNonUniformity 95.8 (9.8~533.5) 136.8 (9.0~1134.7) <0.001
NGTDM
 wavelet-HH_ngtdm_Strength 7.5e-4 (3.1e-5~0.1) 2.1e-3 (1.9e-5~4.4e-2) 0.001
GLDM
 wavelet-HH_gldm_LargeDependenceLowGrayLevelEmphasis 4.6 (0.2~18.6) 2.2 (0.2~19.1) <0.001

Fig. 3 Importance of radiomics features for predicting lateral cervical lymph node metastases in medullary thyroid carcinoma
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feature is more important when having the larger absolute 
value

For RTM, we first computed a radiomics score and 
then combined with TI-RADS features to establish 
RTM. The coefficients of margin, TI-RADS Level and 
radiomics score and intercept of the model in 5-fold 
cross-validation were summarized in Supplementary 
Table 5. The radiomics score plays the most important 
role in RTM.

Prediction performance of the models
Figure  4 illustrated the ROC curves of the LCLNM 
status prediction results of the three models in the 
5-fold cross-validation independent test dataset. From 
the experimental results, the AUCs of the TM were 
0.64, 0.66, 0.77, 0.66, and 0.66, respectively, and aver-
aged to be 0.68±0.05 with one standard deviation. The 
AUCs of the RM were 0.76, 0.72, 0.85, 0.85, and 0.73, 

respectively, and averaged to be 0.78±0.06 with one 
standard deviation. The AUCs of the RTM were 0.82, 
0.8, 0.9, 0.83, and 0.75, respectively, and averaged to 
be 0.82±0.05 with one standard deviation. The corre-
sponding quantitative indexes of the three models and 
the Delong test results on all independent test dataset 
were summarized in Table 3.

Clinical utility
Figure  5 illustrates the decision curve of the LCLNM 
status prediction models in all (5-fold) independent 
test dataset. The filled net benefit region demonstrated 
that using LCLNM status prediction models can gain 
more benefit than treating all MTC patients or treating 
no MTC patients. The RTM could bring more consist-
ent and significant benefit to MTC patients than TM 
and RM.

Fig. 4 ROC curves of the LCLNM status prediction results of the three models in the 5-fold cross-validation independent test dataset. a ROC curves 
for TI-RADS model (TM), b) ROC curves for radiomics model (RM), c) ROC curves for radiomics combined with TI-RADS model (RTM), d) comparison 
of ROC curves by the three models. Shaded areas of a), b) and c) represent one standard deviation
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Table 3 Quantitative indexes comparisons of TI-RADS model (TM), Radiomics model (RM) and radiomics combined with TI-RADS 
model (RTM) in 5-fold cross-validation independent test dataset

The bold value represents the best value of a quantitative index

Model AUC ACC SEN SPE PPV NPV MCC F1

TM
 fold 1 0.64 0.56 0.67 0.45 0.54 0.59 0.12 0.6

 fold 2 0.66 0.58 0.8 0.39 0.53 0.69 0.21 0.64

 fold 3 0.77 0.67 0.86 0.5 0.62 0.79 0.38 0.72

 fold 4 0.66 0.56 0.71 0.41 0.54 0.6 0.13 0.61

 fold 5 0.66 0.57 0.75 0.36 0.56 0.57 0.12 0.64

 Average 0.68 0.59 0.76 0.42 0.56 0.65 0.19 0.64

RM
 fold 1 0.76 0.67 0.62 0.73 0.68 0.67 0.35 0.65

 fold 2 0.72 0.67 0.6 0.74 0.67 0.68 0.34 0.63

 fold 3 0.85 0.7 0.76 0.64 0.67 0.74 0.4 0.71

 fold 4 0.85 0.74 0.81 0.68 0.71 0.79 0.49 0.76

 fold 5 0.73 0.65 0.67 0.64 0.67 0.64 0.3 0.67

 Average 0.78 0.69 0.69 0.69 0.68 0.7 0.38 0.68

RTM
 fold 1 0.82 0.77 0.71 0.82 0.79 0.75 0.54 0.75

 fold 2 0.8 0.7 0.65 0.74 0.68 0.71 0.39 0.66

 fold 3 0.9 0.81 0.9 0.73 0.76 0.89 0.64 0.82

 fold 4 0.83 0.79 0.71 0.86 0.83 0.76 0.59 0.77

 fold 5 0.75 0.65 0.67 0.64 0.67 0.64 0.3 0.67

 Average 0.82 0.74 0.73 0.76 0.75 0.75 0.49 0.73
Significance level of Delong test results for different models
 Test dataset TM & RM TM & RTM RM & RTM

 All (5-fold) 0.030 <0.001 0.077

Fig. 5 Comparison of decision curves of the LCLNM status prediction of the three models in all (5-fold) independent test dataset. (TM: TI-RADS 
model, RM: radiomics model, RTM: radiomics combined with TI-RADS model.)
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Discussion
Thyroid ultrasound is an effective tool to evaluate the 
lymph node status in MTC patients [6, 8]. We investigated 
the association of ultrasound features from TI-RADS 
and LCLNM status. There were significant differences 
between LCLNM negative group and LCLNM positive 
group in margin and TI-RADS levels, and these results 
are consistent with the previously reported results [9, 
24]. Based on the two features, we build the regularized 
logistic regression model, that is TM, to predict LCLNM 
status. The feature importance analysis demonstrated that 
the margin was the more important predictor. Overall, 
the performance of TM as presented in Table 3 is not so 
good. Possible reasons may be that the TI-RADS results 
are commonly influenced by the experience of reviewers 
and more information from images have not been fully 
explored, as they are currently relying solely on the naked 
eye.

Many radiomics studies have investigated the capabil-
ity for analyzing thyroid carcinoma, including predic-
tion of distant metastases of follicular thyroid carcinoma 
[14], risk stratification systems for thyroid nodules [15], 
the differentiation between malignancy and benign thy-
roid nodules [25], prediction of lymph nodes status 
[18–21], prediction of BRAF mutation [26], prediction 
of malignancy and pathological outcome in patients with 
papillary thyroid cancer [27]. The relationship between 
radiomics and MTC, however, is not well understood. As 
far as we are aware, this study is the first to use radiom-
ics to predict LCLNM in MTC patients. In this study, we 
extracted 464 radiomics features from ultrasound images 
and finally selected 12 features (Fig.  3) to establish the 
RM through a two-step feature selection approach. These 
features were distributed in first order statistics, GLCM, 
GLSZM, NGTDM and GLDM (Table 2). Some of these 
radiomics features, such as Small Area Low Gray Level 
Emphasis and Size-Zone Non-Uniformity, were similar 
to the previous study for prediction of distant metasta-
sis of follicular thyroid carcinoma [14]. The Delong test 
results show the RM is significantly better than the TM 
(p<0.05) as shown in Table 3. Radiomics features can be 
taken as more powerful predictors.

Furthermore, we computed the radiomics score, refer-
ring to previous studies [14, 15], for each patient based 
on the selected 12 radiomics features. We established the 
RTM using the radiomics score, margin and TI-RADS 
levels. Compared with the RM, the performance of the 
RTM has been further improved as shown in Table  3, 
Figs. 3 and 4. The radiomics score played the most impor-
tant role in the RTM. The Delong test results also show 
the RTM is significantly better than the TM (p<0.001). 
Overall, the RTM has the best performance for predict-
ing LCLNM status in MTC patients.

In the absence of enough evidence of LCLNM, it is 
always questionable whether patients should undergo 
lymph node dissection. One of the main concerns with 
LCLNM is the risk of complications associated with 
extended lymphadenectomy, such as hypoparathy-
roidism and nerve palsy. Effective preoperative assess-
ment for LCLNM status is essential. The performance 
of solely TI-RADS system to identify LCLNM in MTC 
patients is limited. Our model combining TI-RADS 
system and radiomics features have improved the pre-
diction performance. It improved the ability to iden-
tify patients who require lymph node dissection while 
avoiding surgical complications for those who do not. 
This model can be used as an aid to clinical decision 
making when it is not clear to the clinician whether to 
perform lymph node dissection.

The stability and reproducibility of features are deter-
mined by ultrasound images. Ultrasound images can 
differ depending on the time and location they were 
taken, who performed the ultrasound with the probe, 
how much pressure was applied to the skin, patient 
status (e.g. body habitus, age, underlying medical con-
ditions like skin diseases, or previous surgeries in the 
area), and other factors. Image normalization is a criti-
cal step that makes sure each pixel has a similar data 
distribution, allowing comparison with other images. 
Hence, the linear min-max normalization method was 
used to minimize this impact. On the other hand, we 
utilized 5-fold cross-validation to reduce the bias and 
maintain repeatability. Naturally, our current study 
lacks the validation of external data, and more data 
samples and involvement from more research cent-
ers will be part of our future research efforts in order 
to further enhance the stability of the model. Further-
more, there is often a gap between the statistical signifi-
cance of radiomics features and their clinical relevance. 
Understanding and interpreting what these features 
represent in terms of underlying pathology can be chal-
lenging. This gap suggests that the practical utility of 
radiomics findings in clinical decision-making was only 
taken as a supporting tool, not as a decisive one. Addi-
tionally, the primary tumor is segmented manually, 
which limits the workflow’s efficiency. The proposed 
model uses ultrasound information to help guide clini-
cal decision-making solely from an ultrasound imag-
ing perspective, and any other clinical information is 
not incorporated into the model. In the future study, a 
fully automated model would be developed that would 
include an automatic model for tumor segmentation 
and a radiomics-based and deep learning-based classi-
fier comprising ultrasound and clinical information for 
LCLNM status prediction to further improve efficiency 
and accuracy.



Page 10 of 11Liu et al. BMC Medical Imaging           (2024) 24:64 

Conclusions
We proposed a radiomics-based model that can accu-
rately predict the status of LCLNM in MTC patients, 
establishing the relationship between the radiomics and 
ultrasound features in MTC patients. This study is the 
first to use radiomics analysis to achieve accurate predic-
tion of LCLNM using ultrasound information alone. This 
model has the potential to serve as an additional tool that 
helps determine the best course of action for treating this 
uncommon type of thyroid cancer.
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