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Abstract
Background Asymptomatic COVID-19 carriers with normal chest computed tomography (CT) scans have 
perpetuated the ongoing pandemic of this disease. This retrospective study aimed to use automated machine 
learning (AutoML) to develop a prediction model based on CT characteristics for the identification of asymptomatic 
carriers.

Methods Asymptomatic carriers were from Yangzhou Third People’s Hospital from August 1st, 2020, to March 31st, 
2021, and the control group included a healthy population from a nonepizootic area with two negative RT‒PCR 
results within 48 h. All CT images were preprocessed using MATLAB. Model development and validation were 
conducted in R with the H2O package. The models were built based on six algorithms, e.g., random forest and 
deep neural network (DNN), and a training set (n = 691). The models were improved by automatically adjusting 
hyperparameters for an internal validation set (n = 306). The performance of the obtained models was evaluated 
based on a dataset from Suzhou (n = 178) using the area under the curve (AUC), accuracy, sensitivity, specificity, 
positive predictive value (PPV), negative predictive value (NPV) and F1 score.

Results A total of 1,175 images were preprocessed with high stability. Six models were developed, and the 
performance of the DNN model ranked first, with an AUC value of 0.898 for the test set. The sensitivity, specificity, 
PPV, NPV, F1 score and accuracy of the DNN model were 0.820, 0.854, 0.849, 0.826, 0.834 and 0.837, respectively. A 
plot of a local interpretable model-agnostic explanation demonstrated how different variables worked in identifying 
asymptomatic carriers.

Conclusions Our study demonstrates that AutoML models based on CT images can be used to identify 
asymptomatic carriers. The most promising model for clinical implementation is the DNN-algorithm-based model.
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Introduction
Coronaviruses are widely distributed pathogens in 
humans and other animals and can cause enteric, neuro-
logic, and respiratory illnesses ranging from the common 
cold to fatal infections [1]. Timely and accurate diagno-
sis of COVID-19 is of utmost importance for the prompt 
treatment of patients and their isolation. The diagnosis 
is confirmed by reverse-transcription polymerase chain 
reaction (RT‒PCR). Typical manifestations of COVID-19 
pneumonia are para-pleural ground-glass opacity (GGO), 
interlobular septal thickening, central consolidation 
of the focus and banded atelectasis [1, 2]. The National 
Health Commission of the People’s Republic of China ini-
tially proposed screening based only on clinical and chest 
computed tomography (CT) findings. However, recently, 
asymptomatic carriers have perpetuated the ongo-
ing pandemic of this viral disease [3–5]. It is difficult to 
timely and accurately reflect the internal viral load on the 
basis of throat swab samples. Negative RT‒PCR results 
for throat swab samples are not the gold standard of 
exclusion. Transmission of the novel COVID-19 from an 
asymptomatic carrier with normal CT findings has been 
reported. The CT images of the asymptomatic patients 
are initially judged as normal by radiologists. However, 
some asymptomatic infections develop into pneumonia 
in later weeks [6]. The rapid person-to-person transmis-
sion among asymptomatic carriers is difficult to discover 
in the clinic. As the full liberalization of COVID-19, early 
recognition of COVID-19 pneumonia would help deter-
mine the degree of the disease and promote early treat-
ment, thereby preventing viral pneumonia. Thus, it is not 
enough for clinicians alone to assess the CT characteris-
tics of asymptomatic patients. Applications of artificial 
intelligence (AI) will help identify CT characteristics spe-
cific to asymptomatic patients.

AI is rapidly entering the medical domain and is being 
used for a wide range of health care and research pur-
poses, including disease detection [7], empirical therapy 
selection [8], and drug discovery [9]. The complexity 
and growing volume of health care data indicate that AI 
techniques will increasingly be applied in almost every 
medical field in the upcoming years. Recent studies 
have demonstrated that AI may prove extremely helpful 
in the medical imaging domain due to its high capabil-
ity for identifying specific disease patterns. Studies have 
proposed several machine learning models that can accu-
rately predict COVID-19 disease severity [10–12]. A 
comprehensive bibliometric analysis was performed to 
summarize all accessible techniques for detecting, clas-
sifying, monitoring and locating COVID-19 patients, 
including AI, big data and smart applications [13]. They 
concluded that AI-assisted CT was better at diagnosing 
COVID-19 pneumonia due to its high precision and low 
false-negative rates. However, models have rarely been 

built to separate asymptomatic from healthy individuals. 
This study was designed to (1) develop predictive models 
by using automated machine learning (AutoML), charac-
terized by automated hyperparameter adjustment, and 
(2) choose the best performing machine learning model 
based on CT radiomic features for the identification of 
asymptomatic COVID-19 patients.

Machine learning models have often been criticized 
for being black-box models. We tried to stare into this 
so-called “black box” to identify the variables that drive 
model performance and understand the extent of these 
variables’ effects on model performance. In this study, 
we aimed to generate multiple machine learning models, 
assess their performance, and select the highest-perform-
ing model for clinical practice.

Materials and methods
Patient cohorts
This retrospective case‒control study was approved 
by the institutional review board of the First Affiliated 
Hospital of Soochow University (Suzhou). Individuals 
enrolled in our study were treated at Yangzhou Third 
People’s Hospital (Yangzhou) from August 1st, 2020, to 
March 31st, 2021. Patients (n = 119) confirmed to have 
COVID-19 by RT‒PCR were included in the case group, 
presenting with no typical symptoms and no obvious 
abnormalities in CT images. All positive COVID-19 
patients underwent a chest CT exam within 48 h after the 
RT‒PCR test, and the identified CT scans were reviewed 
by two experienced radiologists who reached a con-
sensus on the results. Participants in the control group 
(n = 75) were from the health examination population of 
a hospital from a nonepizootic area; these subjects had 
two negative RT‒PCR results for COVID-19 within 48 h. 
Each throat swab was collected at least 24 h apart. Chest 
CT exams were diagnosed as normal in the control group 
by two experienced radiologists who reached consensus 
on the results. The exclusion criteria of the control group 
included (1) various types of pneumonia (e.g., viral, 
bacterial and mycoplasma pneumonia), (2) pulmonary 
tumours, (3) pulmonary emphysema or pneumatocele, 
(4) tuberculosis, and (5) bronchiectasis.

We randomly split the CT images (n = 997) of the afore-
mentioned individuals (n = 194) into training (n = 691) 
and internal validation (n = 306) datasets to develop the 
models. Furthermore, these models were tested on CT 
images (n = 178) of individuals enrolled based on the 
aforementioned inclusion and exclusion criteria from 
Suzhou from 1st January 2021 to 31st January 2021. The 
flowchart of our study is shown in Fig. 1.

Chest CT exams
The identified CT images were directly searched and 
downloaded from a medical image cloud platform (www.

http://www.ftimage.cn
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ftimage.cn). The lung window was applied to generate 
5∼8 images for one individual axial slice in a CT scan 
with 5  mm thickness, 1500 ± 100 Hounsfield unit (HU) 
window width and a − 600 ± 50 HU window level. The 
images were saved in PNG format.

Image preprocessing
All CT images were pre-processed, and the lung lobes 
were masked as the region of interest (ROI) using the 
image processing toolbox in MATLAB (version: R2021b; 
Natick, MA). We extracted 32 features from each ROI 
using 5 feature extraction algorithms, including tex-
ture features based on a grey histogram (GH) (n = 6), 
texture features based on a grey-level co-occurrence 
matrix (GLCM) (n = 6), Gabor filter features (GB) (n = 3), 
Gauss Markov random field features (GMRF) (n = 12) 
and Tamura features (T) (n = 5). Three authors worked 
together to perform all image segmentations. Three 

authors independently extracted features from the same 
set of randomly selected images. To test the differences in 
image preprocessing between these authors, the Kruskal‒
Wallis H test with Dunn post hoc test was used. Further-
more, intraclass correlation coefficient (ICC) analysis was 
used to calculate the stability between the three authors. 
Subsequent analysis was continued only when there were 
no statistically significant differences (P > 0.05) in the 
Kruskal‒Wallis H test and the features had excellent sta-
bility (ICC > 0.75).

Model development and validation based on AutoML
Model development and validation were conducted in 
R software (version: 4.1.0, The R Foundation) with the 
H2O package installed from the H2O.ai (cluster version: 
3.36.0.2) platform (www.h2o.ai). AutoML is a function 
in H2O that automatically builds a series of machine 

Fig. 1 Study flowchart
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learning models and finally integrates them into various 
stacking and ensembled models.

First, the dataset from Yangzhou was randomly split 
into a ‘training’ (70%) set and a ‘validation’ (30%) set. 
Second, the training set was used to develop models to 
predict the probability of COVID-19 infection based on 
six algorithms, namely, the distributed random forest 
(RF), random grid of gradient boosting machine (GBM), 
random grid of deep neural network (DNN), fixed 
grid of generalized linear model (GLM), random grid 
of eXtreme gradient boosting (XGBoost) and stacked 
ensemble (SE) algorithms. Notably, DNN is defined as 
multilayer perception, a multilayer feedforward artificial 
neural network containing numerous hidden layers and 
hyperparameters that works well on tabular data in the 
H2O official document. The models were then ranked 

according to their performance on the training set by the 
AutoML leaderboard. Furthermore, fivefold cross-vali-
dation was used to validate these models, and fine-tuned 
hyperparameters were applied to elevate the perfor-
mance of the models. The models were developed from 
the training set based on different algorithms, and the 
performance of the models was improved by automati-
cally adjusting the hyperparameters and calculating the 
mean square error (MSE) in the internal validation set. 
The above process was repeated five times, and then the 
models with the minimum MSE were obtained. Finally, 
the performance of the obtained models was verified in a 
dataset from Suzhou (n = 21).

Statistical analysis
Continuous variables were described as the mean ± stan-
dard deviation (SD) if normally distributed or as the 
median and interquartile range (IQR) if not. The differ-
ences in feature extraction among the three authors were 
compared using the Kruskal‒Wallis H test with Dunn 
post hoc test. There was no statistical significance when 
P > 0.05, which is representative of feature stability. Image 
preprocessing and feature extraction were conducted in 
MATLAB (version: R2021b; Natick, MA), and statistical 
analysis was performed with R software (version: 4.1.0, 
The R Foundation) connected with the H2O.ai platform. 
Data visualization involved a receiver operating charac-
teristic (ROC) curve with an area under the curve (AUC) 
for model discrimination. Model performance was evalu-
ated based on the AUC, accuracy, sensitivity, specificity, 
positive predictive value (PPV), negative predictive value 
(NPV) and F1 score. The F1 score is the harmonic mean 
of precision and recall. The actual classifications and pre-
dictive probabilities were listed as a confusion matrix 
consisting of true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN). The formulas are 
listed as follows: accuracy = TP+TN

TP+FP+FN+TN sensitivity = 
TP

FN+TP specificity = TN
TN+FP PPV = TP

TP+FP NPV = TN
TN+FN  

recall = TP
TP+FN  precision = TP

TP+FP F1 score = 2×precision×recall
precision+recall

.

Results
Feature selection and model optimization using AutoML
A total of 1,175 images were obtained from the COVID-
19 group (n = 594) and the control group (n = 581). High 
stability with a relatively high intraclass correlation 
coefficient was shown in image features extracted from 
these CT images (PKruskal−Wallis test > 0.05, Table  1). Six 
models based on six algorithms were developed, and 
the performance of the DNN model ranked first among 
all models, with an AUC value of 0.898 in the test set. 
As shown in Table 2, all models achieved excellent per-
formance in the training set, with accuracy, sensitivity, 
specificity, PPV, NPV, F1 score and AUC values beyond 

Table 1 Differences in image preprocessing among the three 
authors using the Kruskal‒Wallis H test and ICC analysis
Texture Features ICC 95%CI P 

Kruskal−Wallis 

H test

Grey 
histogram

Grayscale mean 0.959 0.865 0.985 0.5069
Contrast mean 0.908 0.779 0.963 0.2446
R 0.910 0.778 0.964 0.2446
Third moment 0.961 0.909 0.984 0.6608
Consistency 0.975 0.921 0.991 0.5838
Entropy 0.966 0.899 0.988 0.5375

Grey level
co-occur-
rence matrix

Max-probability 0.974 0.913 0.991 0.5871
Contrast 0.883 0.769 0.948 0.6691
Correlation 0.822 0.655 0.920 0.4459
Energy 0.976 0.924 0.991 0.5871
Homogeneity 0.970 0.903 0.989 0.6326
Entropy 0.968 0.902 0.988 0.5730

Gabor filter Texture mean 0.995 0.983 0.998 0.8384
Contrast 0.994 0.985 0.998 0.8257
Entropy 0.994 0.980 0.998 0.8777

Gauss Mar-
kov random 
field

GMRF1 0.938 0.875 0.973 0.9784
GMRF2 0.935 0.862 0.972 0.6458
GMRF3 0.785 0.611 0.900 0.7857
GMRF4 0.852 0.716 0.933 0.5980
GMRF5 0.752 0.560 0.883 0.8573
GMRF6 0.654 0.420 0.830 0.8505
GMRF7 0.710 0.501 0.860 0.6711
GMRF8 0.804 0.639 0.910 0.9584
GMRF9 0.817 0.661 0.916 0.8218
GMRF10 0.896 0.798 0.954 0.9863
GMRF11 0.782 0.605 0.899 0.8561
GMRF12 0.775 0.592 0.895 0.8077

Tamura Coarseness 0.991 0.982 0.996 0.9472
Contrast 0.959 0.895 0.984 0.5367
Directionality 0.754 0.564 0.884 0.8448
Line-likeness 0.900 0.788 0.958 0.6008
Roughness 0.963 0.906 0.986 0.5375

ICC = intraclass correlation coefficient
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0.990. In the validation set, the AUC value of all models 
was 1.000, and the SE model obtained the highest accu-
racy (1.000), followed by the GLM (accuracy = 0.997). 
Furthermore, the test set results were as follows: DNN 
model (AUC = 0.898), GLM (AUC = 0.867), SE model 
(AUC = 0.866), GBM model (AUC = 0.822), RF model 
(AUC = 0.820) and XGBoost model (AUC = 0.800).

The confusion matrix of the six models in the three 
datasets is depicted in Fig. 2. False-positive findings in the 
test set varied by different models, with 17.98% (16/89) 
for the XGBoost model, 8.99% (8/89) for the SE model, 
46.07% (41/89) for the RF model, 2.25% (2/89) for the 
GLM, 0 (0/89) for the GBM model and 14.61% (13/89) for 
the DNN model. With regard to true-positive findings, 
the DNN model detected 73 COVID-19 images among 
89 positive images, with the highest sensitivity value of 
0.820 for the test set. Other models showed comparable 
but inferior sensitivity: 0.809 for the RF model, 0.787 for 
the SE model, 0.742 for XGBoost and 0.719 for the GLM. 
The GBM model misclassified 58 images among 89 posi-
tive images, with the lowest sensitivity of 0.348.

Heatmaps of variable importance demonstrated the 
different weights of 32 texture features for different 
models based on the training set (Fig. 3a). Many models 
determined that the Tamura roughness was an important 
variable for predicting the outcome. The models we pro-
posed were highly correlated (Fig. 3b).

Performance of the best model
As shown in Table  2, the DNN model showed the best 
ability to distinguish asymptomatic COVID-19 patients 
from normal controls. The sensitivity, specificity, PPV, 
NPV, F1 score and accuracy of the DNN model were 
0.820, 0.854, 0.849, 0.826, 0.834 and 0.837, respectively 
(Table 2). To interpret the DNN model, we enumerated 
several important variables in sequence in Table  3. The 
texture mean based on GB ranked first, with a relative 
importance value of 1.000, followed by R based on GB 
(value = 0.935). Four parameters based on GMRF had val-
ues of 0.922, 0.894, 0.833 and 0.818. Correlation based on 
GLCM and line-likeness based on T ranked fourth and 
fifth, with values of 0.901 and 0.897, respectively.

A plot of local interpretable model-agnostic explana-
tion (LIME) demonstrated how different variables work 
in separating the asymptomatic from the normal. The red 
contradicted the prediction, while the blue supported the 
prediction. As shown in Fig. 4a, positive case 1 was pre-
dicted to be asymptomatic, with a probability of 1.00. The 
texture mean based on GB contributed the most to the 
prediction, followed by R based on GH. Other cases were 
explained and are shown in Fig.  4. Additionally, nega-
tive case 1 in Fig. 4b was judged as normal by the DNN 
model, with a probability of 0.79. The texture mean based 
on GB also had the highest weight based on the DNN 
model.

Table 2 Performance of the six models for the three datasets
Models GBM XGBoost GLM DNN RF SE
Training set AUC 1.000 1.000 1.000 1.000 1.000 1.000

sensitivity 1.000 1.000 1.000 1.000 1.000 1.000
specificity 1.000 1.000 1.000 0.994 1.000 1.000
PPV 1.000 1.000 1.000 0.994 1.000 1.000
NPV 1.000 1.000 1.000 1.000 1.000 1.000
accuracy 1.000 1.000 1.000 0.997 1.000 1.000
F1-score 1.000 1.000 1.000 0.997 1.000 1.000

Validation set AUC 1.000 1.000 1.000 1.000 1.000 1.000
sensitivity 0.895 0.993 0.993 1.000 1.000 1.000
specificity 1.000 0.994 1.000 0.987 0.987 1.000
PPV 1.000 0.993 1.000 0.987 0.987 1.000
NPV 0.906 0.994 0.994 1.000 1.000 1.000
accuracy 0.948 0.993 0.997 0.993 0.993 1.000
F1-score 0.944 0.993 0.997 0.993 0.993 1.000

Test set AUC 0.822 0.800 0.867 0.898* 0.807 0.866
sensitivity 0.348 0.742 0.719 0.820 0.809 0.787
specificity 1.000 0.820 0.978 0.854 0.539 0.910
PPV 1.000 0.805 0.970 0.849 0.637 0.897
NPV 0.605 0.760 0.777 0.826 0.738 0.810
accuracy 0.674 0.781 0.848 0.837 0.674 0.848
F1-score 0.517 0.772 0.826 0.834 0.713 0.838

DNN, deep neural network, GBM, gradient boost machine; GLM, general linear model; RF, random forest; SE, Stacked ensemble; XGBoost, eXtreme gradient boosting; 
AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; *, the highest AUC value in the test set.
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Discussion
Principal findings
We used AutoML to successfully generate multiple 
machine learning models, assess their performance, 
and select the highest-performing models for predicting 
asymptomatic surviving COVID-19 infection. Our study 
demonstrates that machine learning models that use CT 
image characteristics can identify asymptomatic patients. 
Clinicians can just type in the image omics features and 
get a prediction probability. Positive nucleic acid result 
was hard to get just from one or twice throat swab sam-
ples. If some patients was suspected with COVID-19 car-
riers, but with no typical symptom, no typical CT viral 
pneumonia imaging performance, this AI model we built 
could help identify these asymptomatic patients, or could 
provide evidence for clinician to get the deeper airway 
samples like tracheoscopic perfusion.

AI, including machine learning and deep learning, has 
been widely used in medical fields such as disease diag-
nosis [14], lesion detection [15], and prognostic analysis 
[16]. Previous studies revealed the potation of AI in med-
ical imaging [17–18]. A systematic review summarized a 
total of 48 studies about AI methods applied to COVID-
19 diagnosis, biomarker discovery, therapeutic evalu-
ation and survival analysis from January 2020 to June 
2022 [19]. This review provided evidence to delineate the 
potential of AI in analysing complex gene information 

for COVID-19 modeling on multiple aspects including 
diagnosis. These gene information is very significant. 
Baktash et al. trained an ensemble bagged tree model 
using clinical parameters but not CT scan for detecting 
atypical COVID-19 presentations with an accuracy of 
81.79%, sensitivity of 85.85% and specificity of 76.65% 
[20]. These studies showed that AI has the potential to 
diagnose the COVID-19. Yan et al. retrospectively col-
lected 206 patients with positive RT-PCR for COVID-19 
and their chest CT scans with abnormal findings, and 
results showed that the CNN model was able to differen-
tiate COVID-19 from other common pneumonias based 
on the CT scan level [21]. His study showed that machine 
learning just using CT scam might identify the COVID-
19. Thus, we developed a series of deep learning mod-
els to identify asymptomatic COVID-19 patients based 
on CT images, which achieved good performance with 
accuracy values ranging from 0.933 to 0.980 in the test 
set [22]. This published study by our team showed that 
machine learning showed high accuracy in diagnosing 
asymptomatic COVID-19 patients. However, previous 
deep learning model is a kind of black box model, where 
we don’t know how deep learning frameworks recognize 
these two kinds of CT images. In this study, we used the 
image omics code to extract interpretable features, such 
as shape features, first-order statistical features, gray scale 
co-occurrence matrix and so on. Based on these features, 

Fig. 2 Confusion matrix of the six models for the three datasets
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the machine learning model classified CT images into 
two categories (COVID-19 and non- COVID-19). Our 
study used machine learning algorithms to differentiate 
asymptomatic patients from normal subjects based on 
CT images and achieved high accuracy, indicating that 
AI is an efficient and informative tool for medical sys-
tems and promotes better decision-making.

The advantage of AutoML is that it is not limited to 
dealing with numerous medical data by powerful com-
putational capability; it can also reduce time-consuming 
costs and labour-consuming costs. Uthman et al. devel-
oped five AI classifiers to predict whether a study was 
eligible for their systematic analysis of complex inter-
ventions using AutoML, indicating that the best classi-
fier yielded a workload saving of 92% [23]. Zhang et al. 

Fig. 3 Heatmaps of variable importance (a) and model correlation (b) based on AutoML in the training set
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compared four AutoML frameworks, AutoGluon, TPOT, 
H2O and AutoKeras, that performed better than tradi-
tional machine learning algorithms, such as support vec-
tor machine algorithms [24]. The authors indicated that 
AutoML could reduce the time and effort devoted by 
researchers due to its automatic model optimization. In 
our study, AutoML code was introduced from the open-
access H2O.ai platform. The process of parameter tuning 
and optimal algorithm selection was automatic, and we 
set the running time of AutoML to 30 s. The promising 
results demonstrated that AutoML is time-efficient and 
labour-saving with comparable predictive performance.

Radiomic medicine can extract a large amount of tex-
ture feature information from images to reflect the het-
erogeneity of damage. For example, GH is a first-order 
statistical feature that depicts the distribution of grey-
level intensities [25]. The GLCM mainly reflects the char-
acteristics of the internal structure of the image through 
the change in density [26–28]. Filters can display the 
spatial heterogeneity of tumours using wavelet transfor-
mation [16]. GMRF is used to remove inconsistency in 
the pixel level of slide images [29]. Therefore, even if no 
lesions are found on the CT images, we can analyse dif-
ferent types of texture features extracted to determine 
whether the lung tissue is damaged. Our results showed 
that the best model was the DNN model. The XGBoost 
model, SE model, RF model, GLM, and GBM model 
performed slightly worse than the DNN model. We 
used the AUC as our metric of model utility because it 
accounts for model sensitivity and specificity. According 
to the DNN model, the texture mean based on GB ranks 
first in importance. R based on the Gabor filter, the 6th 
parameter of GMRF, correlation based on GLCM, line-
likeness based on the Tamura algorithm, the 11th param-
eter of GMRF, the 12th parameter of GMRF and the 7th 

parameter of GMRF ranked in sequence among CT char-
acteristics using the DNN model. Our results showed 
that these CT characteristics occupied a decisive position 
in distinguishing asymptomatic carriers.

The diagnosis of asymptomatic COVID-19 carriers is 
difficult due to no abnormal pathological changes in the 
lung in radiological images and no apparent symptoms, 
such as fever, cough and expectoration [2, 30]. A com-
prehensive review summarized currently available AI 
devices to monitor and detect asymptomatic COVID-
19 carriers early using vital data [31]. Ozturk et al. dif-
ferentiated normal from COVID-19-infected subjects 
using deep learning (DL) models, achieving an average 
accuracy of 98.08% based on X-rays [15]. Yasar et al. [32] 
developed machine learning (ML)-based and DL-based 
classifiers to distinguish between COVID-19 and non-
COVID-19 on CT images, with over 0.9197 AUC values 
under 2- and 10-fold cross validation. This study used 
the AutoML method based on CT radiomic features to 
study asymptomatic COVID-19 patients to find changes 
in nonfocus areas that humans cannot find. These mod-
els also had high sensitivity values, specificity values, and 
NPVs.

Clinical insights into the Black Box
The trade-off between predictive power and interpret-
ability is a common issue when working with black-box 
models, especially in medical environments where results 
have to be explained to medical providers and patients. 
Interpretability is crucial for questioning, understanding, 
and trusting AI and machine learning systems.

According to our variable importance heatmap, many 
models determined that the Tamura roughness exhib-
ited substantial weight for predicting the outcome. The 
Gabor filter-texture mean was also an influential variable. 
The confusion matrix of six models for the three datasets 
provided insight into the black box. The GBM model pre-
sented the highest specificity. The DNN model presented 
the highest sensitivity. The LIME plot of the DNN model 
allowed us to determine the importance of variables and 
provided information on how the variables influenced the 
models’ predictions. It provided numerical information 
on variables’ effects. For example, the LIME showed that 
the GB-Texture mean was associated with an increased 
probability of negative and a decreased probability of 
positive results. The large weight ratio of GB-Texture to 
predict the result supports the idea that CT with low GB-
Texture indicates an increased risk of infection. Further 
exploration is needed to confirm clinical findings and 
show clinical thresholds.

Limitations
Firstly, a total of 1,175 images from 173 cases were 
included in our study; thus, the sample number was 

Table 3 Variable importance rankings for the best AutoML 
model algorithm (DNN)
Variables ID Ranking Relative 

importance
Variables

GB_txtmean 1 1.000 Texture mean based on 
Gabor filter

GB_R 2 0.935 R based on Gabor filter
GMRF6 3 0.922 6th parameter of Gauss 

Markov random field
GLCM_corr 4 0.901 Correlation based on 

grey-level co-occur-
rence matrix

T_line 5 0.897 Line-likeness based on 
Tamura algorithm

GMRF11 6 0.894 11th parameter of Gauss 
Markov random field

GMRF12 7 0.833 12th parameter of Gauss 
Markov random field

GMRF7 8 0.818 7th parameter of Gauss 
Markov random field
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relatively insufficient. Further exploration in more cit-
ies was needed. Secondly, there was no complete bio-
logical explanation of the radiomic features in this study, 
and further exploration is needed in the future. Thirdly, 
the best DNN model achieved the highest AUC and 
F1-score, but the specificity and PPV were lower than 
those of the GLM and SE models. This result indicated 
that there might be misdiagnosis if the DNN model is 

used in clinical practice. Fourthly, demographics of the 
participants was not analysed in this study. Whether the 
difference existed among the participants was not sure. 
This is the limitation for broader application. Lastly, 
manual image preprocessing was conducted before 
AutoML analysis, which was time- and labour-consum-
ing. Despite the high consistency of image preprocessing, 

Fig. 4 Local interpretable model-agnostic explanation (LIME) of the deep learning model in the test set. (a) shows how eight key features contributed to 
predicting positivity for the eight COVID-19 cases. (b) shows how eight key features contributed to predicting negative results for the eight normal cases
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the heterogeneity of devices from different institutions is 
still inevitable.

Conclusion
In conclusion, we believe that AutoML models based 
on radiomic features of chest CT images can effectively 
classify asymptomatic COVID-19 carriers. In the future, 
we plan to continue research in three areas: first, deep 
radiomics, which can automatically segment the lung 
lobes and extract radiomic features using novel technolo-
gies, i.e., transfer learning. In addition, augmenting data-
set samples from multiple centres is helpful to further 
ensure model generalization and robustness. Prospec-
tive experiments also need to be considered to evaluate 
model reliability in clinical decisions. Furthermore, we 
should investigate the association between radiomic fea-
tures and biological significance to explore new mecha-
nisms to improve our model.
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