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Abstract
Background Ultrasound imaging is the most frequently performed for the patients with chronic hepatitis or liver 
cirrhosis. However, ultrasound imaging is highly operator dependent and interpretation of ultrasound images is 
subjective, thus well-trained radiologist is required for evaluation. Automated classification of liver fibrosis could 
alleviate the shortage of skilled radiologist especially in low-to-middle income countries. The purposed of this study 
is to evaluate deep convolutional neural networks (DCNNs) for classifying the degree of liver fibrosis according to the 
METAVIR score using US images.

Methods We used ultrasound (US) images from two tertiary university hospitals. A total of 7920 US images from 
933 patients were used for training/validation of DCNNs. All patient were underwent liver biopsy or hepatectomy, 
and liver fibrosis was categorized based on pathology results using the METAVIR score. Five well-established DCNNs 
(VGGNet, ResNet, DenseNet, EfficientNet and ViT) was implemented to predict the METAVIR score. The performance 
of DCNNs for five-level (F0/F1/F2/F3/F4) classification was evaluated through area under the receiver operating 
characteristic curve (AUC) with 95% confidential interval, accuracy, sensitivity, specificity, positive and negative 
likelihood ratio.

Results Similar mean AUC values were achieved for five models; VGGNet (0.96), ResNet (0.96), DenseNet (0.95), 
EfficientNet (0.96), and ViT (0.95). The same mean accuracy (0.94) and specificity values (0.96) were yielded for all 
models. In terms of sensitivity, EffcientNet achieved highest mean value (0.85) while the other models produced 
slightly lower values range from 0.82 to 0.84.

Conclusion In this study, we demonstrated that DCNNs can classify the staging of liver fibrosis according to 
METAVIR score with high performance using conventional B-mode images. Among them, EfficientNET that have 
fewer parameters and computation cost produced highest performance. From the results, we believe that DCNNs 
based classification of liver fibrosis may allow fast and accurate diagnosis of liver fibrosis without needs of additional 
equipment for add-on test and may be powerful tool for supporting radiologists in clinical practice.

Keywords Deep convolutional neural network, Liver fibrosis, Ultrasound imaging

Automated classification of liver fibrosis 
stages using ultrasound imaging
Hyun-Cheol Park1, YunSang Joo2, O-Joun Lee3, Kunkyu Lee4, Tai-Kyong Song4, Chang Choi2, Moon Hyung Choi5* and 
Changhan Yoon6*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-024-01209-4&domain=pdf&date_stamp=2024-2-6


Page 2 of 9Park et al. BMC Medical Imaging           (2024) 24:36 

Introduction
Damage of hepatocytes caused by various etiologies such 
as infection, non-alcoholic fatty liver, alcohol, inherited 
metabolic disease, immune disease, and drug induces 
activation of hepatic stellate cell, secretion of cytokines 
and accumulation of collagens, resulting in liver fibrosis 
[1]. Cirrhosis is the most severe and irreversible stage of 
liver fibrosis, which can progress to portal hypertension 
and hepatocellular carcinoma [2]. Thus, accurate diagno-
sis of liver fibrosis in early stage is of great importance 
in clinical practice since prognosis and management 
of chronic liver diseases are related to severity of liver 
fibrosis.

The histopathological examination through liver biopsy 
is the gold standard for liver fibrosis diagnosis and stag-
ing. However, liver biopsy is prone to sampling errors due 
to examination of small liver parenchyma specimen, and 
to intra-/inter-observer variations [3, 4]. In addition, it is 
invasive that can cause various complications and may 
lead to death. Thus, repeated liver biopsy to trace disease 
progression is not recommended.

To overcome these limitation, non-invasive meth-
ods such as magnetic resonance imaging (MRI), com-
puted tomography (CT) and ultrasound (US) imaging 
for accessing liver fibrosis have been investigated and 
shown promising results despite the need for additional 
time and equipment [5–7]. These imaging modalities 
provide not only morphological information (e.g., paren-
chymal changes and portal hypertension) but also func-
tional information (e.g., stiffness of tissue) that is related 
to the stage of fibrosis. Among these, US imaging is the 
widely available modality with no ionizing radiation. 
Thus, US imaging is the most frequently performed in 
the regular follow-up of patients with chronic hepatitis 
or liver cirrhosis for the detection of hepatocellular car-
cinoma and an evaluation of the degree of liver fibrosis. 
It was reported that the progression of fibrosis include 
alteration of parenchymal echogenicity (graded as fine 
echotexture, mildly coarse and highly coarse) and sur-
face nodularity [8]. Figure 1 shows the representative US 
images of liver fibrosis for each stage. Although these 
imaging findings have a correlation with the degree of 
liver fibrosis, interpreting the findings is subjective thus 
well-trained radiologist is required for evaluation.

Recently, several studies have shown that deep convo-
lutional neural networks (DCNNs) based diagnosis and 
assessment of liver fibrosis is viable solution using MR 
and CT images [9–13]. A DCNN-based quaternary clas-
sification model was developed to classify liver cirrho-
sis (F0/F1/F23/F4) using US B-mode images [14]. In the 
method, VGGNet was applied for transfer learning and 
the accuracy of VGGNet for METAVIR score classifica-
tion was 83.5%. However, the developed automated clas-
sification model was trained using images obtained by US 

machines from three major vendors (i.e., GE healthcare, 
Philips Medical Systems and Siemens Medical Solution). 
Because the model learned from images acquired from a 
limited domain would be biased toward the characteris-
tic of the corresponding machine, it may achieve a weak 
performance when applying US images acquired from 
another domain. Considering that there are many differ-
ent types of US machines, multi-domain data are neces-
sary to reflect real clinical situations.

The purpose of this study was to access the perfor-
mances of popular and well-established DCNNs (VGG-
Net, ResNet, DenseNet, EfficientNet and ViT) to identify 
that which of DCNNs trained on the ImageNet dataset 
will perform best for the classification of liver fibrosis 
using US images obtained from 11 different US machine.

Related works
In this section, we describe previous works on US image 
classification using deep learning. It was reported that 
an accuracy of 90.6% in identifying fatty liver disease 
from US images could be achieved by using the VGG-
16 model [15]. A novel multi-task learning approach for 
segmenting and classifying tumors in breast ultrasound 
images was proposed [16]. In the method, they used 
VNet as the backbone network. The proposed network 
comprised an encoder-decoder network for segmenta-
tion and a lightweight multi-scale network was integrated 
for classification. A regularized spatial transformer net-
work was proposed for automated pleural effusion detec-
tion in lung US and an accuracy of 91.12% was achieved 
in classification of pleural effusion [17]. The performance 
of ResNet pre-trained with the ImageNet dataset for clas-
sification of chronic liver disease in renal US imaging was 
evaluated [18]. For classifying thyroid nodules and breast 
lesions in US images, TNet and BNet using pre-trained 
VGG-19 was developed and could achieve classification 
accuracies of 86.3% and 86.5%, repectively [19]. A deep 
learning architecture that includes a feature extraction 
network, an attention-based feature aggregation net-
work, and a classification network was also proposed for 
diagnosing thyroid nodules [20].

Materials and methods
Ethics committee approval
US images from two tertiary university hospitals (Seoul 
St. Mary’s Hospital, The Catholic University of Korea and 
Eunpyeong St. Mary’s Hospital, The Catholic University 
of Korea) were used for the training and validation. This 
study was approved by the institutional review boards of 
both hospitals (Seoul St. Mary’s Hospital: KC20RISI0869 
and Eunpyeong St. Mary’s Hospital: PC20RISI0229). The 
requirement for informed consent was waived because of 
the retrospective study design.
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Fig. 1 Representative US images of liver fibrosis. Alteration of parenchymal echogenicity (graded as fine echotexture, mildly coarse and highly coarse) 
and surface nodularity can be identified as the liver fibrosis progress
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Training and validation dataset
Table 1 summarizes the clinical characteristics of the 933 
patients (556 male patients) included in this study. The 
median age was 54 years old (interquartile range, 44–63). 
The numbers of patients and images that were used in 
this study were summarized according to US machines 
in Table  2. Only patients who underwent liver biopsy 
or hepatectomy between 2011 and 2020 at the Seoul St. 
Mary’s Hospital, or between 2019 and 2020 at the Eun-
pyeong St. Mary’s Hospital, were eligible for this study. 
Although non-invasive methods such as transient elas-
tography are widely used to evaluate liver fibrosis, there is 
a possibility that errors will occur in cases of a contracted 
liver or ascites. Among them, patients who underwent 
a liver US within 3 months prior to biopsy or surgery 
were included in this study, with 745 patients from the 
Seoul St. Mary’s Hospital and 188 patients from the Eun-
pyeong St. Mary’s Hospital in the training/validation. A 

radiologist with 11 years of experience with abdominal 
US reviewed all images and selected liver images regard-
less of scanning plane. All images obtained with using a 
convex probe. In this study, for the automated diagnosis 
of liver fibrosis, we categorized liver fibrosis based on 
pathology results of biopsy or hepatectomy using the 
METAVIR score [21]. Note that a pathology report is a 
medical document that provides final diagnosis based 
on microscopic examination of the tissue specimen. 
The METAVIR score consists of five classes, i.e., F0, F1, 
F2, F3, and F4. Here, F0 indicates no fibrosis; F1, portal 
fibrosis without septa and an insignificant abnormal area; 
F2, portal fibrosis with few septa and abnormalities in an 
area wider than with F1; F3, numerous septa without cir-
rhosis and prominent abnormalities; and F4, cirrhosis. 
We experimented with a five-level classification of F0, F1, 
F2, F3, and F4 for liver fibrosis.

Data preprocessing
The distribution of the grades of liver fibrosis is shown 
in Table  1. Training and validation data were used at a 
ratio of 8:2 for the entire dataset. Before training a model, 
the distribution ratio of the dataset must be considered. 
In particular, data on diseases that are difficult to detect 
in early stage, such as liver fibrosis, have an imbalance 
in terms of degree. In general, F0 is easily obtained, and 
such data occupy 28.1% of the dataset. F4, the end stage 
of liver fibrosis, accounted for 33.2% of the dataset. How-
ever, the proportions of F1 (13.3%), F2 (11.0%), and F3 
(14.4%) were relatively small because only a few patients 
were examined during the early stages of liver fibro-
sis. Such data imbalance can bias and overfit the model 
training [22, 23]. To solve this problem, data augmenta-
tion should be conducted [24]. Using a computer vision 
method, a data augmentation of the images expands the 
size of a limited dataset. In general, flipping, color jitter, 
cropping, rotation, translation, and noise generation are 
used for such augmentation [25]. However, data aug-
mentation may undermine the inherent meaning of the 

Table 1 The characteristics of patients in the data
Values

Number of patients (n) 933
Number of images (n) 7920
Sex (M:F) 556: 377
Age (years) 54 (44–63)
Total bilirubin (mg/dL) 0.88 (0.63–1.54)
AST (U/L) 45 (27–98)
ALT (U/L) 41 (23–100)
Albumin (g/dL) 4.1 (3.5–4.4)
Platelet count (109/L) 174 (110–235)
Prothrombin time (INR) 1.09 (1.03–1.20)
METAVIR score
F0 262 (28.1%)
F1 124 (13.3%)
F2 103 (11.0%)
F3 134 (14.4%)
F4 310 (33.2%)
Number of ultrasound machines 11
AST, aspartate transaminase; ALT, alanine transaminase; INR, international 
normalized ratio

Table 2 Distribution of liver fibrosis stages in the training and validation data
Machine model Manufacturer Number of patients Year of manufacture Fibrosis

F0 F1 F2 F3 F4
Training
/
Validation

SSD-5000 Aloka 13 2005 2 0 1 1 9
EUB-7500 Hitachi 169 2009 31 27 27 29 55
IU22 Philips 175 2009 86 13 7 17 52
Logiq E9 GE 108 2013 46 4 6 17 35
Prosound F75 Hitachi 107 2016 17 21 28 11 30
S2000 Siemens 105 2009 18 8 6 13 60
Sequoia Acuson 59 2009 7 2 4 7 39
Epiq Philips 11 2019 1 5 0 2 3
Logiq E10 GE 126 2019 38 28 11 27 22
Logiq S8 GE 50 2019 13 10 11 8 9
Aplio 500 Toshiba 10 2011 1 3 2 2 2
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original data depending on the augmentation method 
applied. Since the US images using a convex array are 
fan shape, horizontal flips were only applied for data 
augmentation in this work. The final images were nor-
malized and resized to a pixel resolution of 224 × 224 
for model training. The size of input images should be 
adjusted appropriately to align with the dimensions per-
mitted by the DCNN models. The approved input size for 
the key models used in our experiments is 224 × 224, and 
it is recommended to maintain a standardized resolution 
for objective experimentation. Furthermore, we employ 
transfer learning using pre-trained parameters from Ima-
geNet. To optimize the effectiveness of transfer learning, 
it is crucial to minimize alterations to the model.

Implementation of DCNNs
The models were trained using VGGNet-16, ResNet-50, 
DenseNet-121, EfficientNet-B0, and ViT [26–30]. Each 
model commonly consists of an encoder fθ and a clas-
sifier gθ. The encoder fθ extracts mid-level features 
through a convolution, and the classifier gθ is a linear 
classifier that classifies the final features. The encoder fθ 
follows the architectures of the VGG, ResNet, DenseNet, 
EfficientNet, and ViT models. Notably, each model 
exhibits distinctive implementation features. VGG is 
characterized by its simplicity and uniformity. With 16 
weight layers, VGG employs small 3 × 3 convolutional 
filters and max-pooling layers. ResNet utilizes residual 
blocks with skip connections, addressing the vanish-
ing gradient problem by enabling the flow of gradients 
through the network. DenseNet redefines connectivity 
in neural networks. DenseNet’s dense blocks connect all 
layers by concatenating feature maps, promoting maxi-
mal information flow. EfficientNet excels in balancing 
model depth, width, and resolution. Its compound scal-
ing method adjusts these dimensions simultaneously, 
achieving state-of-the-art performance with a smaller 
model. EfficientNet represents an innovative approach to 
optimizing computational efficiency. ViT (Vision Trans-
former) introduced the transformer architecture to com-
puter vision. Departing from traditional convolutional 

structures, ViT tokenizes input images into patches 
and employs self-attention mechanisms. This pioneer-
ing approach allows ViT to capture global dependencies 
effectively, achieving performance comparable to or sur-
passing traditional convolutional models at a fraction of 
the computational cost.

The final classifier g is implemented as a fully-con-
nected layer, constituting a linear classifier. The output 
value of g is normalized to a probability using the softmax 
function. The objective cross-entropy function is config-
ured such that the probability of the target class is maxi-
mized. Finally, the parameter θ is trained to optimize the 
objective function.

We applied transfer learning for model training (Fig. 2) 
because scratch learning is valid when the number of 
training data is more than 5000 per class [31, 32]. Trans-
fer learning uses a model trained on an extensive dataset 
from another domain. In general, the ImageNet data-
set, which consists of 1000 classes, is widely used for 
pre-training. Model training using extensive datasets is 
suitable for extracting meaningful features from input 
images. Because the pre-trained model has been trained 
to find high-level features, the convolution filter of the 
model is better optimized than scratch learning when 
learning a new domain from the pre-training. If the pre-
trained and post-trained datasets are in similar domains, 
the models can yield valid results even when freezing 
the convolution layers. However, in post-training using 
medical images, the model must be retrained based on 
the overall parameters because ImageNet and medical 
images have different cardinal features. In this study, after 
transfer learning on ImageNet, we conducted fine-tuned 
the model using US images [33].

In this study, the loss function for model training was 
CrossEntropyLoss by Negative Loglikelihood, and the 
optimization algorithm and learning-rate scheduler were 
the Adam optimizer and CosineAnnealingLR, respec-
tively. The initial learning rate started at 0.0001 and was 
adjusted to a value close to zero every 50th epoch by the 
scheduler. We trained the model for 1000 epochs using a 
batch size of 64.

Fig. 2 Training diagram of DCNNs. Five models (VGG16, ResNet50, DenseNet121, EfficientNet-B7, and ViT) were trained using US images from 11 different 
machines. The number of data is based on patients. DCNN, deep convolutional neural network; US, ultrasound
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Evaluation metrics
The performance of DCNNs was evaluated through accu-
racy, sensitivity, specificity, positive and negative likeli-
hood ratio. In addition, area under the receiver operating 
characteristic curve (AUC) with 95% confidential interval 
for five-level (F0/F1/F2/F3/F4) classification was used to 
assess the efficiency of DCNNs.

Results
Table  3 summarizes the diagnostic performance of 
DCNNs for five-level classification. Similar AUC val-
ues were achieved for five models (Fig.  3); VGGNet 
(mean: 0.96, range: 0.94–0.98), ResNet (0.96, 0.93–0.97), 
DenseNet (0.95, 0.94–0.96), EfficientNet (0.96, 0.94–
0.97), and ViT (0.95, 0.94–0.97). The same mean accu-
racy value (0.94) was yielded for all models. In terms 
of sensitivity, EffcientNet achieved highest value (0.85, 
0.80–0.89) while the other models produced slightly 
lower values; VGGNet (0.82, 0.72–0.89), ResNet (0.84, 
0.75–0.90), DenseNet (0.82, 0.75–0.89), and ViT (0.83, 
0.76–0.92). All model achieved approximately the same 
mean specificity value (0.96).

Discussion
In this study, we demonstrated that DCNNs trained by 
transfer learning on ImageNet can classify the staging 
of liver fibrosis according to METAVIR score with high 
performance (AUC: > 0.95, accuracy: 0.94) using con-
ventional B-mode images from multiple US machines. 
Five different DCNNs showed good diagnostic perfor-
mance, and the highest performance was achieved with 
comparably less computational complex network, i.e., 
EfficientNET.

Recently, various studies have been conducted on 
DCNN-based automatic detection and classification 
using US images [34]. Automated staging of liver fibro-
sis based on US images was also investigated [14]. 
Although high performance (AUC: 0.90, accuracy: 0.94) 
was achieved for classification of significant fibrosis (F2 
or greater), the accuracy for quadrant classification (F0/
F1/F23/F4) was relatively low (0.83). This is mainly due 
to the imbalance of training dataset. In our method, we 
conducted data augmentation to balance data distribu-
tion, which prevent bias and overfit the model training. 
In addition, our result showed that computational com-
plex networks do not always guarantee better perfor-
mance. The use of DCNNs with less computations have 
several advantage since it can lower hardware complex-
ity and reduce training time. This will allow fast and easy 

Table 3 Diagnostic performance of DCNNs for five-level classification
Model Staging AUC Accuracy Sensitivity Specificity PLR NLR
VGGnet F0 0.96 0.91 0.89 0.92 11.44 0.12

F1 0.96 0.94 0.72 0.98 31.35 0.29
F2 0.98 0.96 0.86 0.98 41 0.14
F3 0.94 0.93 0.74 0.97 21.2 0.27
F4 0.96 0.92 0.87 0.94 15.05 0.13

Resnet F0 0.96 0.93 0.9 0.94 15.24 0.11
F1 0.96 0.96 0.79 0.99 53 0.21
F2 0.97 0.96 0.84 0.98 44.32 0.16
F3 0.93 0.94 0.75 0.97 22.15 0.26
F4 0.97 0.92 0.89 0.94 13.68 0.12

DenseNet F0 0.95 0.91 0.89 0.93 12.19 0.12
F1 0.96 0.96 0.81 0.98 47.35 0.2
F2 0.95 0.95 0.82 0.97 28.21 0.19
F3 0.94 0.93 0.75 0.96 20.92 0.26
F4 0.96 0.92 0.86 0.95 16.46 0.15

EfficientNet F0 0.96 0.93 0.89 0.95 18.58 0.11
F1 0.96 0.95 0.79 0.98 39.75 0.21
F2 0.97 0.96 0.87 0.98 34.92 0.13
F3 0.94 0.94 0.81 0.96 18.48 0.2
F4 0.96 0.93 0.86 0.95 17.83 0.15

ViT F0 0.97 0.92 0.91 0.93 13.07 0.09
F1 0.94 0.95 0.77 0.99 51.6 0.23
F2 0.96 0.95 0.82 0.97 26.58 0.18
F3 0.94 0.93 0.76 0.96 20.11 0.25
F4 0.96 0.93 0.86 0.96 19.52 0.15
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implementation of DCNNs for automated classification 
on conventional US machines.

US is commonly used to evaluate the liver in patients 
with chronic liver disease. Liver fibrosis stage is diffi-
cult to predict solely based on US B-mode images even 
with regular follow-up because the morphology or echo-
genicity of the liver does not change remarkably in the 
early stage of liver fibrosis. Therefore, US elastography 
has been used as a promising imaging technique to eval-
uate the elastic modulus of tissues and to evaluate liver 
fibrosis [35–37]. However, liver fibrosis stage was divided 
into two groups, such as F4 versus others, in most stud-
ies since it is still difficult to classify five stages of liver 
fibrosis even with elastography. Once our approach is 
mounted on existing machines, it will be a convenient 
alternative tool for assessing liver fibrosis without selec-
tion of scanning plane and needs of additional equipment 
for add-on test such as Fibroscan and elastography, espe-
cially in low-to-middle income countries.

In this work, we compared the results of the main back-
bone models ranging from shallow to deep networks. 
While various state-of-the-art (SOTA) models exist, the 
majority of them adopt derivative structures from our 
experimental models. Therefore, for an objective assess-
ment of the effectiveness of DCNN, it is appropriate to 
evaluate the performance using the fundamental forms 
that constitute the backbone, including the latest baseline 
such as Vit.

Our study has several limitations. First, since we used 
the data augmentation to balance the dataset for each 
stage, it could undermine the performance of networks. 
For our approach to be used in practice, the model should 
be trained using sufficiently large dataset (more than 
5000 case for each stage) without data augmentation. 
Second, although we included as many US machines (11 
different machines) as possible, there are dozens of com-
panies that manufacture US scanners. Since all manufac-
turers have their own image processing methods such as 

Fig. 3 Receive operation characteristic curves with 95% confidence intervals for classification of liver fibrosis according to METAVIR score using VGGNet, 
ResNet, DenseNet, EfficientNet and ViT, respectively
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filtering and speckle reduction, echotexture or feature 
of images is different from each other (see Fig.  1). For 
versatile solution, we may need to include images from 
every US machines for training. Otherwise, model need 
to be trained individually by using images from each US 
machine. Third, the US images used for training were 
acquired by well-trained radiologists. Considering that 
US is highly operator-dependent, images from under-
trained radiologists may need to be included for low-to-
middle income countries with weak health care systems. 
Fourth, due to the computational burden, we resized 
images to 224 × 224 for model training, thus our approach 
may use the overall morphological features such as liver 
surface irregularity to classify liver fibrosis. The alteration 
of parenchymal echogenicity also convey useful informa-
tion to predict liver fibrosis [8]. Thus, if we can use whole 
B-mode image without sacrificing the resolution, the per-
formance of model could be improved. Finally, due to the 
nature of retrospective study, we could not include infor-
mation regarding hepatitis B or C and alcohol consump-
tion. However, liver fibrosis is diagnosed regardless of the 
cause, thus absence of etiology would not undermine our 
experiment results.

In conclusion, we have demonstrated that DCNNs can 
classify METAVIR score using conventional US images 
with high accuracy. Given the fact that US imaging is 
widely available modality and the most frequently used 
in the regular follow-up of patient with chronic liver dis-
ease, DCNNs based classification of liver fibrosis using 
B-mode images will be powerful tool for supporting radi-
ologists in clinical practice, which however need further 
improvement and validation would be required.
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