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Abstract 

Chest radiographs are examined in typical clinical settings by competent physicians for tuberculosis diagnosis. How-
ever, this procedure is time consuming and subjective. Due to the growing usage of machine learning techniques 
in applied sciences, researchers have begun applying comparable concepts to medical diagnostics, such as tuber-
culosis screening. In the period of extremely deep neural nets which comprised of hundreds of convolution layers 
for feature extraction, we create a shallow-CNN for screening of TB condition from Chest X-rays so that the model 
is able to offer appropriate interpretation for right diagnosis. The suggested model consists of four convolution-max-
pooling layers with various hyperparameters that were optimized for optimal performance using a Bayesian optimiza-
tion technique. The model was reported with a peak classification accuracy, F1-score, sensitivity and specificity of 0.95. 
In addition, the receiver operating characteristic (ROC) curve for the proposed shallow-CNN showed a peak area 
under the curve value of 0.976. Moreover, we have employed class activation maps (CAM) and Local Interpretable 
Model-agnostic Explanations (LIME), explainer systems for assessing the transparency and explainability of the model 
in comparison to a state-of-the-art pre-trained neural net such as the DenseNet.
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Introduction
Tuberculosis (TB) is a highly infectious lung infection 
caused by the bacteria Mycobacterium Tuberculosis. The 
bacteria affect persons of all ages, but is more widespread 
among those in their middle years. When a person 
inhales air tainted with TB bacteria, they get infected. 
These individuals have a 5- to 10% lifetime risk of having 
the condition [1]. However, those with a weaker immune 
system, malnutrition, or diabetes are more likely to get 
tuberculosis [2]. The illness is widespread, and a 2020 
WHO factsheet states that new cases are increasing at a 
rate of 43% in South-East Asia, 25% in Africa, and 18% in 
the western pacific area [3].

Tuberculosis is diagnosed in a suspected individual by 
studying his or her clinical history, physical appearance, 
and chest radiograph. To diagnose chest anomalies, a 
posterior-anterior chest radiograph is employed. Lesions 
may occur in any location of the lungs and vary in size, 
shape, density, and cavitation. A posterior-anterior (PA) 
chest radiograph is used to determine the presence of 
chest abnormalities [4].

Chest radiographs are checked in typical clinical set-
tings by skilled doctors for the identification of tuber-
culosis. This method, however, is time intensive and 
subjective. Subjective discrepancies in radiographic ill-
ness diagnosis are unavoidable. Notably, chest radio-
graphs of TB are often misclassified as other illnesses 
with similar radiologic patterns, resulting in patients 
receiving the incorrect medicine and deteriorating their 
health state [5]. Additionally, resource-constrained 
nations, particularly rural ones, have a shortage of quali-
fied radiologists [6].

Due to the scarcity of skilled radiologists for tubercu-
losis screening and the buildup of massive data sets from 
low-cost chest radiographs, computer-aided screening 
has emerged as a feasible option. The widespread use 
of machine learning techniques in applied sciences has 
prompted researchers to apply similar ideas to medical 
diagnostics, such as tuberculosis screening. The Con-
volution Neural Network (CNN) is a well-researched 
and proven deep learning model for image classification 
applications using publicly accessible picture datasets 
such as IMAGENET. Recently, a variety of CNN-based 
image classification models, including VGG, ResNet, 
DenseNet, and MobileNet, have been created for gen-
eral image classification and also adapted to identify 
specialty pictures such as Chest X-rays [7–11]. This is 
accomplished through the use of transfer learning, which 
entails modifying the top-level layers to train on the spe-
cific X-ray images that contain spatial information while 
retaining the low-level layers that are capable of discrimi-
nating more common image textural features such as 
edges and contours.

Using CNN-based deep learning techniques, com-
puter-aided TB screening has been shown to classify test 
radiographs with high accuracy. However, there are some 
limitations to the high accuracy of complex and deeper 
CNN models (models with numerous convolution lay-
ers) [12]. Given their model-agnostic nature, deep CNN 
models are frequently challenging to interpret. Due to 
the black-box nature of the models, clinical applications 
of AI-based Computer Aided Diagnosis (CAD) are still in 
their nascent stage. As a result, these methods have not 
yet gained the trust of physicians. The explainability of 
CNN models for classifying medical images is a widely 
discussed subject because it is crucial for radiologists to 
understand how CNN models arrive at their conclusions.

Building comprehensible CNN-based models for medi-
cal image classification, particularly in TB screening from 
radiographs, has significant advantages. First, it offers 
details about the feature layers that significantly contrib-
ute to the prediction outcome, giving insights into how 
the developed model functions internally. Therefore, 
based on the necessary image features of the radiographs, 
which are biomarkers of the disease, the doctor could 
verify that the model is functioning as intended. Sec-
ond, interpreting the model can help determine whether 
the results are trustworthy, allowing doctors to make 
informed decisions about the management of the disease 
or the need for human intervention. Better disease pre-
diction outcomes, shorter analysis times, and more wide-
spread clinical application could result from the ability to 
interpret and explain the deep learning models for TB.

The degree to which deep learning models are expli-
cable is proportional to the model’s complexity. Deeper 
CNN systems have a tendency to produce more accurate 
classifications, but their underlying principles are difficult 
to comprehend. For the development of a CNN-based 
TB disease screening system, there must be a trade-off 
between explainability and accuracy.

A shallow Convolution Neural Network (CNN) is a 
type of neural network architecture that has a smaller 
number of convolutional and pooling layers compared 
to deep CNNs. Shallow-CNNs are designed for simpler 
image classification tasks and have fewer parameters, 
resulting in faster training and inference times. They offer 
a balance between computational efficiency and perfor-
mance. Shallow-CNNs can be advantageous in cases 
where the complexity of deep CNNs is not necessary, 
such as when capturing discriminative features from rela-
tively simple images [13]. Typically, a simple and shallow 
CNN model would suffice for initial disease screenings, 
such as TB. Hence, in this paper, we aim to develop and 
validate a simple CNN model with fewer feature layers 
that provides reliable classification performance as well 
as robust interpretability. However, developing a simple 
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CNN model with good performance metrics is not a 
simple task. For optimal performance in TB screening, 
extensive model optimization is required. Consequently, 
the aforementioned factors led us to develop an explaina-
ble system for tuberculosis, which inspired to the follow-
ing contributions of this research paper:

 (i) For tuberculosis screening, simple and shallow-
CNN architecture is presented.

 (ii) The proposed model’s hyperparameters are fine-
tuned using a Bayesian optimization technique to 
provide accurate differentiation of tuberculosis 
characteristics in Chest X-rays.

 (iii) A comparison is made between the proposed shal-
low-CNN and DenseNet in terms of classification 
performance and explainability.

Related work
Computer aided diagnosis of diseases took a prominent 
stage with the advancement of deep learning techniques 
especially for analyzing medical images. Convolution 
Neural Network (CNN) is a standard method for predict-
ing diseases from images such as Chest X-rays, CT and 
MRI images. Earlier attempts to employ CNN for tuber-
culosis detection may be found in Liu et al. work’s which 
involved changing the topologies of two pre-trained nets, 
AlexNet and GoogleNet. They reported a classification 
accuracy of 85.68% when evaluated against a large data-
set, exceeding the benchmark approaches at the time 
[14].

Similarly, Liu and Huang evaluated six pre-trained 
models for TB detection: DenseNet, NasNet, VGG16, 
InceptionNet, XceptionNet, and ResNet. They enhanced 
accuracy by altering the activation function and fine-
tuning the training settings. They concluded that the best 
model for tuberculosis classification is DenseNet [15] 
which was reported with an accuracy of 0.835.

In addition to chest radiography, tuberculosis is fre-
quently diagnosed by studying sputum smear micro-
scopic pictures. In this regard, Samuel and Kanna created 
a computer-aided method that captures microscopic 
sputum smear images and extracts features using a modi-
fied Inception V3 Net. Following that, a Support Vector 
Machine (SVM) classifier was trained on the CNN fea-
tures for the purpose of classifying tuberculosis (TB). 
They reported an accuracy of 95.05 % in classification, as 
well as good sensitivity and specificity scores [16]. Simi-
larly, Kuok et al. compared three distinct CNN architec-
tures for TB classification from sputum smear images: 
single-CNN, Deep networks of CNN, and ensemble-
CNN. It was a large study involving 19000 smear images 
and concluded that deeper neural networks are more 
capable of providing dependable classification results 

even when the dataset is unbalanced [17]. They reported 
a top detection performance of 86% using their refined 
region-based CNN.

Recently, hybrid deep learning (DL) models for diag-
nosing medical disorders in lung X-ray images have been 
proposed in the literature. Bharati et al. merged a classi-
cal CNN network, the VGG, with a Spatial Transformer 
Network (STN) to improve the detection of lung dis-
eases [18]. In comparison to Vanilla CNN and Capsule 
Nets, their work had a moderate accuracy of 73 %. In a 
slightly different technique, Tasci et  al. employed a vot-
ing mechanism to decide on X-ray image for tuberculosis 
diagnosis using a series of fine-tuned CNN architectures. 
They showed high accuracy of 97.5% while testing their 
findings using two publicly available tuberculosis datasets 
[19].

In more recent work by Ahmed et al. a study on X-ray 
image-based pneumonia and tuberculosis was done 
based on differential diagnosis models. It combines deep 
CNN features (VGG16 and ResNet18) with hand-crafted 
LDG features (LBP, DWT, and GLCM). It compares pre- 
and post-PCA VGG16 and ResNet18-integrated ANN 
performance [20, 21]. Chandra et  al. developed simple 
shape-based geometrical features, combined handcrafted 
shape features with statistical texture characteristics, 
developed an algorithm to detect different TB patholo-
gies, and compared proposed methods to state-of-the-art 
methodologies [22].

Deep neural networks (DNNs) were demonstrated 
to perform well on X-ray images when used to classify 
tuberculosis (TB). However, its impact on clinical trials 
is not fully recognized by the medical community. The 
increased performance is offset by the incapacity to grasp 
these deep learning models. When compared to expert or 
rule-based systems, deep learning-based image categori-
zation algorithms often lack the requisite interpretability. 
By using DNN-based classification models, we are able to 
trade off interpretable components for uninterpretable 
ones, resulting in increased classification performance 
through increased abstraction or hidden layers. As a 
result, its use in mass clinical practice is restricted due to 
the use of black-box models, which limit the physician’s 
comprehension of how the model generates a decision 
outcome.

Explainable Artificial Intelligence (XAI) solves the 
interpretability problem of CNN by employing various 
types of explainer systems, which frequently involve 
post-hoc analysis to gain insights about the model. 
Visual inspection based on saliency maps is a preva-
lent CNN-based XAI technique used in medical imag-
ing applications. These maps highlight discriminant 
image regions that are utilized by image classifica-
tion models. Numerous techniques, such as the visual 
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explanations technique based on guided backpropa-
gation, deconvolution, class activation maps (CAM), 
local interpretable model-agnostic and attention mod-
els, have been reported in the literature [23]. The lim-
ited applications of these explainer systems could be 
expanded to include deep neural networks for tuber-
culosis screening. The majority of earlier attempts 
to use visual inspection for TB validation involved 
pre-trained models such as DenseNet [24]. These are 
extremely complex and computation-intensive CNN 
architectures that can be explained through visual 
maps, but are frequently unnecessary for prescreen-
ing of tuberculosis from radiographs. Therefore, the 
objective of this study is to develop a TB screening 
system with fewer feature extraction convolution lay-
ers that has robust classification performance and does 
not compromise the interpretability of the model.

Materials and methods
The purpose of this research study is to develop an 
efficient and interpretable shallow-CNN model for 
tuberculosis diagnosis. This is in contrast to previous 
published work that concentrated on validating deep 
neural models in order to achieve higher classification 
scores but was not interpretable [13]. We describe the 
source and type of the chest X-ray utilized to construct 
the proposed system in this part, as well as the tech-
nique for testing the proposed shallow-CNN and pre-
trained net for interpretability using class activation 
maps (CAM) [25] and LIME [26] methods.

Dataset
The TB chest X-ray used in this investigation were col-
lected from a dataset made freely available by the IEEE 
Dataport-Tuberculosis (TB) chest X-ray database with 
the identifier “https:// dx. doi. org/ 10. 1109/ ACCESS. 2020. 
30313 84, https:// doi. org/ 10. 21227/ mps8- kb56” [6, 27]. We 
obtained normal and abnormal X-ray images of healthy 
and TB participants and resized them to 224×224×3 
dimensions for use as input to the CNN models. As it is 
customary to have different dataset for training the model 
effectively, we divided the available images into three dis-
joint data groups. We constructed a training set of 750 
images, a validation set of 125 images, and a test set of 125 
images from these X-ray images, as indicated in Fig. 1 from 
the aforementioned database. Meanwhile, Fig. 2 illustrates 
a representative sample of radiographs utilized in this 
investigation.

In regular clinical study of tuberculosis patients, skilled 
radiologists visually analyze chest X-ray in order to detect 
tuberculosis symptoms in the lung areas. For instance, in 
Fig. 2, the test photographs depicting the lung regions of 
normal/healthy participants with normal lung function, 
but the TB images depict some type of pulmonary infil-
trates, which may be a symptom of infection. This analy-
sis is a lengthy and laborious procedure that is frequently 
subjective.

Implemented scheme
By developing an appropriate CNN model for computer 
aided tuberculosis diagnosis, the laborious work of visu-
ally assessing chest X-ray images for tuberculosis identi-
fication is decreased. Along with developing an effective 

Fig. 1 Data split for validating the CNN models used in this study

https://dx.doi.org/10.1109/ACCESS.2020.3031384
https://dx.doi.org/10.1109/ACCESS.2020.3031384
https://doi.org/10.21227/mps8-kb56
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deep learning model, we aim to scrutinize the trained 
model’s class discrimination for proper interpretation 
of chest anomalies. This is accomplished by visualizing 
and extracting filter activation maps, as well as generat-
ing class activation maps (CAM) to determine which 
areas are employed by the DL model for class classifica-
tion of normal and tuberculosis participants, respec-
tively. Figure  3(a) illustrates the difference in approach 
between explainable and conventional deep learning 
models in clinical setting. Figure 3 (b) illustrates the pro-
posed approach for verifying DL models for tuberculosis 
classification.

Convolution neural nets
CNN is a mathematical abstraction for a shift-invariant 
hierarchical learning system. It is a collection of special-
ized neural networks capable of learning complicated 
spatial patterns directly from the pixel relationships in an 
image. Unlike traditional models such as support vector 
machine (SVM) and Random Forest approaches, which 

extract essential features manually, CNN-based models 
do the job automatically. This also eliminates any subjec-
tivity that may have been there throughout the feature 
engineering process. Due to the widespread availability of 
dedicated hardware such as the graphics processing unit 
(GPU)/tensor processing unit (TPU), the computational 
cost of generating CNN activation functions has been 
rapidly reducing.

With the establishment of the IMAGENET classifi-
cation competition, which is held on a regular basis to 
address image classification difficulties, many state-of-
the-art models have been found. These included AlexNet, 
VGGNet, ResNet, InceptionNet, and DenseNet, which 
all performed very well when classified 1000 classes sup-
plied by IMAGENET [28]. Through a process of transfer 
learning, the nets were also utilized to solve additional 
specialized image classification issues in other areas, 
such as medical image classification. The bottom layers 
of the models were preserved from their initial training 
using IMAGENET, but the top layers were changed to 

Fig. 2 Posterior-Anterior (PA) chest X-ray of the healthy and tuberculosis groups (TB)
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Fig. 3 (a) Difference between Explainable and Conventional AI Models (b) Pipeline for the investigation strategy employed in this article to analyze 
tuberculosis for explainability
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understand the intricate spatial patterns associated with 
the specific picture categorization use case. These pre-
trained state-of-the-art CNN models were employed to 
classify tuberculosis, and high classification accuracy was 
found. Rahman et al. conducted a comprehensive inves-
tigation in which they employed nine such pre-trained 
models for tuberculosis diagnosis using a transfer learn-
ing technique. They demonstrated higher classification 
performance with the DenseNet on segmented X-ray 
radiographs [6]. As such, we evaluate the proposed shal-
low-CNN model and compare its performance and class 
activation to that of the DenseNet deep learning model in 
this research study.

Shallow‑CNN for TB detection
Deep neural networks, in particular pre-trained nets 
based on a transfer learning strategy, are well-known 
for their high classification accuracy. The precision, 
on the other hand, comes at the expense of interpret-
ability. In the case of medical image classification, the 
computer-aided diagnosis system frequently requires 
the physician or radiologist to provide a transparent and 
explainable conclusion of the class discrimination for 
proper interpretation. DNN models are unable of provid-
ing any explanations for failure modes. As a result, when 
it comes to Deep Learning models, there is a trade-off 
between accuracy and interpretability. To overcome this 

constraint, we intend to create a simple (fever layers) and 
interpretable shallow-CNN(S-CNN) model.

A shallow CNN refers to a convolution neural network 
architecture that has a relatively small number of layers 
compared to deeper CNN models. It typically consists of 
only a few convolutional layers followed by pooling and 
fully connected layers. Shallow CNNs are often used for 
tasks that require less complex feature extraction, such as 
image classification or object detection in simpler data-
sets [29].

S-CNN functions similarly to a deep neural network 
but has less convolution and dense blocks. The design 
of the S-CNN for TB screening is based on the nature 
of the disease’s lung manifestations in the affected 
population. One of the symptoms of tuberculosis is the 
formation of granuloma complex in the lung’s promi-
nent regions. Consequently, the lung portions of the 
chest X-ray have a significantly different texture than 
the rest of the image. We believe that S-CNN with 
fewer layers could be adequate for learning these dis-
criminant radiograph features for TB screening. For 
this reason, we utilized only four convolution layers 
and a variable number of kernels with different sizes. 
Figure  4 depicts the proposed S-CNN for TB screen-
ing, which consists of a four-layer convolutional and 
max-pooling structure followed by two feedforward 
neural networks.

Fig. 4 Schematic of the proposed interpretable Shallow-CNN classification algorithm for tuberculosis
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The architecture of the proposed s-CNN consists of 
different modules which could be explained as follows:

(a) Chest X-ray Input Layer: The chest radiographs are 
of 224×224 dimension with a channel depth of 3.

(b) Convolution Layer: These are the feature extrac-
tion layers that learns the textural features of the 
radiographs. Based on kernel size different image 
features are extracted. S-CNN consists of four con-
volution layers with varying depth for learning TB 
manifestations. The operation of the layer could be 
given as:

Here, the feature map g
θ
 is obtained by convolving the 

kernel hθ with the input image f  . Here ‘m’ and ‘n’ specify 
the coordinates of the output image and ‘j’ and ‘k’ are the 
coordinates of the input pixel, relative to the output pixel. 
By the process of the convolution the network trains and 
get activated to localized image feature based on the 
instantiated kernel.

 (iii) Pooling Layer: Once the image features are 
extracted in the Convolution layers, Pooling layer 
reduces the feature redundancy through a down-
sampling process. There are two main advantages 
of using the pooling layer after the convolution 
layers namely: (a) the layer reduces the total num-
ber of trainable parameters of the model there by 
increasing the training speed (b) as the number of 
parameters are reduced, the problem of overfitting 
of the model to the input vector is limited thus pro-
ducing good generalization capability to the net-
work. The operation of pooling layer could be given 
as:

Here, sp is the down-sampled feature map and Tp rep-
resents the pooling transform which could be a max, min 
or average of the input vector.

(d) Dense Layer: It is the fully connected feed-forward 
neural network with takes the flattened feature 
maps of the preceding feature extraction layer and 
computes an overall activation of the network. 
These are high-level feature extraction layers.

(e) Classification Layer: It is the output layer which 
performs the outcome of the input image and cat-
egorizes the type of image namely whether normal 
or abnormal radiograph based on SoftMax activa-
tion function.

g
θ [m, n] = f ∗ h

θ [m, n] =

j k

hθ [j, k]f [m− j, n− k]

When interpretability and accuracy are of equal impor-
tance in the domain of medical image classification, 
the selection of neural network architecture is critical. 
Within this particular framework, the Shallow Convolu-
tional Neural Network (S-CNN) emerges as a notewor-
thy substitute for conventional deep models. In order 
to attain a thorough comprehension of its merits, we 
establish a significant analogy with AlexNet [28], an early 
adopter of deep learning architectures that was initially 
developed to tackle the ImageNet challenge.

AlexNet is widely recognised for its adaptability and 
resilience when confronted with intricate image datasets, 
whereas the S-CNN intentionally strives for simplicity 
and interpretability in order to attain similar outcomes in 
the analysis of medical images. This comparative analy-
sis provides valuable insights into the compromises that 
exist between efficiency and depth, thereby clarifying the 
contextual appropriateness of each architectural design, 
with a particular focus on the specialised field of tuber-
culosis (TB) screening. Although both the Shallow Con-
volutional Neural Network (S-CNN) and AlexNet aim 
to classify images, they diverge considerably in terms 
of structure and intricacy, with each providing unique 
benefits.

The S-CNN, as its nomenclature implies, intentionally 
employs a shallow architecture consisting of a limited 
number of convolutional layers. This design decision is 
predicated on the notion that a reduced quantity of lay-
ers is adequate for distinguishing crucial radiographic 
characteristics associated with tuberculosis screening. 
AlexNet, on the other hand, is distinguished by its pro-
found architecture, which comprises numerous dense 
and convolutional layers. It is capable of acquiring com-
plex hierarchical features from a variety of datasets, such 
as ImageNet, due to this depth. S-CNN prioritises inter-
pretability and simplicity. The S-CNN utilises fewer con-
volution layers in order to extract crucial features from 
chest X-rays, particularly those that are suggestive of 
tuberculosis manifestations.

AlexNet, renowned for its ability to acquire intricate 
features by virtue of its more profound architecture, dem-
onstrates exceptional performance on intricate image 
datasets. However, it might be excessively designed for 
tasks that solely require feature extraction. The S-CNN 
architecture is specifically designed for tuberculosis 
screening and is informed by the unique attributes of TB 
manifestations observed in chest X-rays. By specialising 
in this area, one can achieve optimal performance in spe-
cific medical imaging tasks.

AlexNet: Initially developed for the classification of 
general-purpose images, it may be excessively complex 
for applications such as tuberculosis screening, where 
a more straightforward model can attain equivalent 
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outcomes with improved interpretability. In essence, the 
Shallow-CNN and AlexNet exemplify contrasting meth-
odologies in the realm of image classification. The for-
mer places emphasis on simplicity, interpretability, and 
optimization specific to the task at hand. In contrast, 
the latter, due to its more profound architecture, strives 
to tackle more extensive image classification tasks by 
acquiring knowledge of intricate features from intricate 
datasets. The selection between them is contingent upon 
the particular requirements and limitations of the given 
implementation.

Model tuning
The suggested model’s configuration for tuberculo-
sis classification must be extensively tweaked to obtain 
the best hyperparameters listed in Table  1. This is not 
straightforward, as there are an infinite number of possi-
ble parameter combinations for the shallow-CNN model 
in order to obtain reliable classification scores. Thus, 
even though the model has fewer layers, utilizing a grid 
search strategy is not intuitive and incurs a computa-
tional penalty. As a result, we employ a Bayesian optimi-
zation strategy to estimate the proposed model’s optimal 
parameters [30, 31].

We considered a probabilistic model, a Gaussian Pro-
cess, for the objective function using the Bayesian tech-
nique. The objective function is chosen to be the loss 
function of the shallow-CNN model, and various model 
parameters are used for optimal performance. The final 
optimal parameters derived from the preceding approach 
are listed in Table  2. The Bayesian tuning process, as 
depicted in Fig. 5, involves the experimentation of vari-
ous configurations during each trial run. In order to 
determine the optimal trial run, the validation accuracy 
is utilised as a criterion for scoring. The S-CNN model 
configuration parameters utilised in this study were 
derived from the experimental trial-7 and are presented 
in Table  2. Figure  6(b) illustrates the S-CNN model’s 
accuracy and loss curves for tuberculosis classification 
with the optimized parameters obtained from the Bayes-
ian optimization procedure discussed prior. We have also 
experimented with AlexNet for TB classification and its 
training procedure is illustrated in Fig. 6(a).

DenseNet
DenseNet is a cutting-edge deep neural network that 
outperformed standard deep learning models in terms 
of classification accuracy and performance. Through the 
transfer learning approach, it was also verified for medi-
cal picture classification. The performance of the Chest 
X-ray in the categorization of tuberculosis has been thor-
oughly researched. DenseNet is notable for its ability to 

address the vanish gradient problem, allow feature prop-
agation, and lower the model’s necessary parameters. To 
compare the proposed shallow-CNN model, we adopt 
the DenseNet architecture and tweak the top layers, 
namely Global Average Pooling (GAP) and a dense layer, 
to make them acceptable for TB classification. The top 
layers are retrained for Chest X-rays in order to learn the 
TB symptoms, while the core dense layer structure and 
weights are kept [32, 33]. Figure 6(c) illustrate the train-
ing and validation process of the DenseNet architecture 
which would be compared with the S-CNN model for 
performance analysis.

Class Activation Map (CAM)
Deep neural nets, which are known to generate strong 
classification performance, frequently have low transpar-
ency and explainability, which is an extensively studied 
characteristic of deep learning models. Class activation 
maps are a means of explaining how deep learning mod-
els conduct picture classification discrimination. CAM’s 
job is to provide high-resolution visualization of regions 
of interest in an input image that were used to make a 
decision. This is very valuable for users like TB radiolo-
gists who want to analyze the TB symptoms in the input 
radiograph to help with disease management. CAM is 
accomplished by taking a DL model and conducting 
global average pooling of the penultimate convolution 
layer. Then, for the improved model, the pooled features 
are employed as a fully connected layer. The net’s weights 
are then projected back to the convolution layers to pro-
duce activation maps that represent the discriminate 
regions of interest [25, 34]. In this study, we use the CAM 
to assess the interpretability of shallow-CNN and com-
pare it to DenseNet.

LIME
Local interpretable model-agnostic explanations (LIME) 
is an alternate popular explainer system utilized for vari-
ous machine learning models used for text and image 

Table 1 Hyperparameter configuration and limits for tuning the 
shallow-CNN model

Hyper‑parameter Range

Kernel Size [3 to 11]

Number of filters in convolution layers [16 to 128]

Kernel Stride [1 to 5]

Pooling Method [MaxPooling, AveragePooling, 
GlobalMaxPooling]

Number of units in dense layer-1 [128 to 1024]

Learning rate [0.1 to 0.001]

Optimizer [Adam, AdaGrad, AdaDelta, SGD]
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classification. The objective of LIME is to develop a white-
box model, namely linear regression, to explain a particular 
region of an input vector, which is referred to as a locally 
interpretable system. By creating super-pixels, the LIME 
system for image classification uses a highly complex trained 
deep neural model to determine the outcome for different 
instances of the input sample image. The results of these 
sampled regions are then weighted based on a measure of 
similarity. Then, a regressor is fitted locally by minimizing a 
locality-aware loss function defined as the fidelity function 
in [35]. In addition to CAM, we use the LIME explainer sys-
tem to interpret model results for TB detection.

Experimental results
We attempt to create a shallow-CNN model for TB 
classification in this paper, so that the network may 
provide explainable results with dependable perfor-
mance ratings for diagnosing the disease. With the 
sample Chest X-ray, the finely tuned proposed model 
is initially analyzed by generating the filter activation 
maps for the convolution and maxpooling layers.

The filter activation functions show how the different 
kernels in the convolution layers respond to different 
features in the input image. The maxpooling layers then 
downsample the feature space, resulting in a smaller 

Table 2 The tuned Shallow-CNN Structure for Interpretable Tuberculosis Detection (learning rate=0.001, Optimizer = Adam)

Layer Type Output Shape Number of Kernel Kernel Size Stride Activation

Input Image 224×224×3 - - - -

Convolution-2D-1 224×224×32 32 5×5 1×1 ReLU

MaxPooling-1 112×112×32 - 3×3 1×1 -

Convolution-2D-2 112×112×64 64 3×3 1×1 ReLU

MaxPooling-2 56×56×64 - 3×3 3×3 -

Convolution-2D-3 56×56×96 96 3×3 1×1 ReLU

MaxPooling-3 28×28×96 - 3×3 3×3 -

Convolution-2D-4 28×28×96 96 3×3 1×1 ReLU

MaxPooling-4 14×14×96 - 3×3 3×3 -

Dense-1 1×512 - - - ReLU

Dense-2 1×2 - - - SoftMax

Fig. 5 Hyperparameter tuning process for selection of best configuration for the proposed Shallow-CNN TB classification model
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model with fewer parameters. In Fig.  7(a)-(d), we can 
see that some of the kernels have activations that are 
more intense in the abdominal areas of the image. This 
indicates that these kernels are detecting features that 
are specific to tuberculosis, such as the presence of 
nodules or infiltrates in the lungs. The other kernels are 
responding to other features in the image, such as the 
edges of the bones and organs.

Figure  8 (a)-(d) shows the weight activation of the 
maxpooling layers. The weight activation shows how 
the different pooling windows in the maxpooling layers 
are responding to the features in the input image. The 

pooling windows are subsampling the feature space, 
which reduces the number of parameters in the model. 
However, the pooling windows are also preserving the 
most important features in the image, which allows the 
model to still learn to classify TB with accuracy.

The visualization of the filter activation functions 
and weight activations can help us to understand how 
the shallow-CNN model is learning to classify TB. The 
filter activation functions show us which features the 
model is paying attention to, and the weight activation 
functions show us how the model is subsampling the 
feature space. This information can be used to improve 

Fig. 6 Training and validation process namely model accuracy and loss curves for the CNN models for tuberculosis classification studied 
in the proposed work. a AlexNet (b) Shallow-CNN (c) DenseNet
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the performance of the model, or to develop new mod-
els for TB classification.

We use the test dataset to determine the performance 
scores of the proposed shallow-CNN and other mod-
els for classification. Figure  9 (a) illustrates the ROC 
plot’s area under the curve, which has a peak value of 
0.976, indicating strong classification performance for 
S-CNN. Furthermore, the proposed model’s confu-
sion matrix given in Fig.  9(a) exhibit fewer erroneous 
predictions (off-diagonal elements), when compared 
to Fig. 9(b) and (c) which indicates the performance of 
the DenseNet and AlexNet models  for the test dataset 
respectively.

In order to validate and compare the proposed model 
with a state-of-the-art network, we have computed the 
classification scores commonly used in the literature for 
the modified DenseNet and AlexNet structure with test 
dataset and tabulated in Tables 3, 4 and 5 respectively.

Table  3 shows test predictions for the three models 
considered in this work. TP-True Positive, TN-True Neg-
ative, FN-False Negative and FP- False Positive of Shal-
low-CNN provide less wrong predictions compared to 
the modified DenseNet and AlexNet.

Table 4 shows the classification metrics-I for assessing 
the performance of the models by means of ACC-Accu-
racy, PRE-Precision, SEN-Sensitivity, SPE-specificity and 
NPV-Negative Predictive Value. The proposed Shallow-
CNN provide improved scores compared to modified 
DenseNet and AlexNet for TB classification.

Table  5 shows classification metrics-II for assessing 
the performance of the models through F1-Score, MCC-
Matthews correlation coefficient, FDR-False Discovery 
Rate, and FOR- False Omission Rate. The metrics verify 
the ability of the shallow-CNN to perform comparable 
classification performance with that of DenseNet and 
AlexNet.

Class activation maps (CAMs) and local interpretable 
model-agnostic explanations (LIME) are two explainable 
AI (XAI) methods that can be used to explain the pre-
dictions of a deep learning model for TB classification. 
CAMs and LIME generate heatmaps for each image that 
highlight the regions (red regions) of the image that are 
most important for the model’s prediction. By analyz-
ing these heatmaps, we can gain a better understanding 
of how the model is making its predictions and identify 
potential areas for improvement.

In the case of the modified DenseNet model shown in 
Fig.  10, the CAM and LIME heatmaps for both normal 
and TB images show that the model is predominantly 
paying attention to features outside of the lung regions. 
This suggests that the model is not fully learning the 
features that are most indicative of TB. In contrast, the 
CAM and LIME heatmaps for the proposed Shallow-Net 

model shown in Fig.  11 shows that the model is paying 
more attention to the lung regions (red regions), which 
is more consistent with the features that are known to be 
indicative of TB. These results suggest that the proposed 
Shallow-Net model is better able to learn the features 
that are important for TB classification than the modified 
DenseNet model. This is likely due to the fact that the 
Shallow-Net model is simpler and has fewer parameters, 
which makes it easier to interpret and troubleshoot.

Overall, the results of this study demonstrate the util-
ity of XAI methods for understanding and improving the 
performance of deep learning models for TB classifica-
tion. By analyzing the heatmaps generated by CAM and 
LIME, we can gain a better understanding of how the 
model is making its predictions and identify potential 
areas for improvement. This information can be used to 
improve the accuracy of the model and to make it more 
interpretable, which is essential for clinical applications.

Discussion
In this study, we investigated the efficacy of a shallow 
Convolutional Neural Network (CNN) architecture, fea-
turing a reduced number of convolution and maxpooling 
layers, for discerning tuberculosis manifestations within 
X-ray images. Our primary premise revolves around the 
feasibility of employing a compact set of convolutional or 
feature extraction layers to effectively address straight-
forward image classification tasks, specifically the devel-
opment of a tuberculosis screening system. Notably, a 
significant portion of existing literature in this domain 
predominantly leans towards deeper convolutional neu-
ral networks, particularly pre-trained models [6, 7, 19].

Table  6 serves to summarize the relevant body of 
work concerning tuberculosis classification. However, 
a direct comparison between these studies is some-
what limited due to the variations in the composition 
of normal and tuberculosis classes across the works 
listed. The majority of prior research in TB diagnosis 
emphasizes the demand for high-accuracy CNN clas-
sifiers in the context of X-ray image classification for 
tuberculosis detection. A case in point is the work by 
Liu et  al., where they formulated a robust CNN clas-
sifier leveraging imbalanced TB cases, achieving an 
accuracy of 85.68% [14]. It’s worth noting that their 
study did not delve into the interpretability of the clas-
sifier’s decisions. Similarly, Liu and Huang identified 
DenseNet-121 as a promising classifier for TB diagno-
sis, boasting a peak accuracy of 0.835. Nevertheless, 
they omitted an exploration of the inner mechanisms 
of the DenseNet model concerning TB interpretability 
[15]. Furthermore, Tasci et  al. explored various pre-
trained neural networks, including InceptionV3 and 
Xception, achieving an impressive peak accuracy of 
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Fig. 7 Visualization of the convolutional layers’ activation functions for the proposed shallow-CNN model’s four layers (a-d) respectively
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Fig. 8 Visualization of the Maxpooling layers’ activation functions for the proposed shallow-CNN model’s four layers



Page 15 of 19Maheswari et al. BMC Medical Imaging           (2024) 24:32  

Fig. 9 CNN models classification performance for TB detection in terms of Receiver Operating Characteristic (ROC) curve and Confusion matrix (a) 
S-CNN (b) DenseNet (c) AlexNet



Page 16 of 19Maheswari et al. BMC Medical Imaging           (2024) 24:32 

97.699% [19]. However, these sophisticated CNN mod-
els, while excelling in classification performance, are 
challenged by limited explainability and interpretability 
[15].

Rahman et  al.’s work pursued a comprehensive TB 
diagnosis inclusive of explanations, ultimately favoring 
DenseNet-201 as the optimal performer with a classifica-
tion accuracy of 98.6%, leveraging Class Activation Maps 
(CAM) for TB interpretations [6]. Despite DenseNet’s 
commendable classification and explanation capabili-
ties, its substantial 201-layer structure raises computa-
tional complexity concerns associated with training and 
inference.

In light of this background, our investigation was moti-
vated by the question of whether a more straightforward 
CNN architecture, characterized by fewer layers and 
reduced computational complexity, could offer sufficient 
efficacy in TB screening. Consequently, our inquiry led 
to the development of a Shallow Convolutional Neural 
Network (S-CNN). Employing extensive parameter tun-
ing, facilitated by Bayesian optimization, we attained 
robust classification performance in TB diagnosis from 
chest X-ray images. The achieved results, including a 
peak F1-score of 0.95 and an MCC value of 0.9, surpassed 

Table 3 Results of the deep learning models considered in this 
work

Classification TP FN TN FP

Modified DenseNet121 55 5 59 6

Shallow-CNN 57 3 62 3

AlexNet 56 4 58 7

Table 4 Performance evaluation based on Classification metrics-I

Classification ACC PRE SEN SPE NPV

Modified DenseNet121 0.91 0.90 0.92 0.91 0.92

Shallow-CNN 0.95 0.95 0.95 0.95 0.95

AlexNet 0.91 0.89 0.93 0.89 0.94

Table 5 Performance evaluation based on Classification metrics-II

Classification F1‑Score MCC FDR FOR

Modified DenseNet121 0.91 0.82 0.098 0.078

Shallow-CNN 0.95 0.90 0.050 0.046

AlexNet 0.91 0.83 0.111 0.064

Fig. 10 The modified DenseNet model was evaluated using two explainable AI frameworks, CAM and LIME. CAM and LIME was used to generate 
heatmaps that show the dominant activation regions (red regions) for normal and TB images. The heatmaps showed that the model did not fully 
learn the features of the lung regions for both normal and TB images
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those obtained with the modified DenseNet utilized for 
comparative analysis in this study.

In addition to the comparison with DenseNet, we 
extended our evaluation to include the AlexNet model, 
an early deep-layer CNN architecture acclaimed for 
its outstanding classification accuracy in the ImageNet 
competition. It is noteworthy, however, that AlexNet 
was originally designed for the classification of general 
image sets, in contrast to our purposeful design of the 
S-CNN model for the specific task of lightweight TB 

classification. Our findings conclusively demonstrate 
that the proposed Shallow-CNN, despite its streamlined 
feature extraction layers, not only rivals but outperforms 
its deeper counterparts in the context of TB screening. 
Furthermore, our approach adeptly captures crucial dis-
ease symptoms from distinct lung regions for accurate 
TB diagnosis, as revealed through the utilization of class 
activation maps and LIME techniques.

However, it’s crucial to acknowledge the limitations of 
our proposed work. Our experimental dataset encom-
passed a relatively limited number of X-ray images for 
test purposes, warranting a more comprehensive TB 
dataset for robust clinical application. Furthermore, this 
study focuses exclusively on the screening of TB mani-
festations, necessitating confirmation by a radiologist for 
precise clinical interpretations.

Conclusion
In this research paper, we sought to answer the intrigu-
ing question of whether a simple CNN architecture 
with fewer convolution layers would suffice for the pre-
screening of tuberculosis from Chest X-rays. The moti-
vation for developing shallow-CNN stems from the fact 
that it requires fewer computation steps due to a smaller 

Fig. 11 The proposed Shallow-Net model was evaluated using two explainable AI frameworks, CAM and LIME. The heatmaps showed 
that the model tried to learn the features of the lung regions specifically for both normal and TB images

Table 6 Summary of relevant studies involving tuberculosis 
classification for comparative analysis

Author Methodology Performance Scores

Liu et al. [14] Convolution Neural 
Network

Acc: 85.68%

Liu and Huang [15] Convolution Neural 
Network

Acc: 0.835

Rahman et al. [6] Combinational of pre-
trained CNN architecture

Acc: 96.47% (unseg-
mented radiographs)

Tasci et al. [19] InceptionV3 and Xcep-
tion CNN

Acc: 97.5% (MC Dataset)

Proposed work Shallow-CNN Acc: 95%
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number of trainable parameters and provides straightfor-
ward interpretation capabilities.

In this study, we have established a shallow-CNN archi-
tecture for accurate classification of TB illness using 
chest Chest X-rays. We have reported a strong classifi-
cation performance with a peak accuracy, and F1-score 
of 0.95 respectively, which is comparable to a state-of-
the-art pre-trained deep learning model employed in the 
study which produced an accuracy and F1-score of 0.91. 
In terms of MCC, the proposed shallow-CNN produced 
a maximum value of 0.90, while the modified DenseNet 
produced 0.82. Consequently, demonstrating that shal-
low-CNN provides comparable TB screening perfor-
mance to DenseNet.

The Shallow-Net model is simpler and has fewer 
parameters than the modified DenseNet model. This 
makes it easier for the Shallow-Net model to learn the 
features that are important for TB classification. This 
also means that the Shallow-Net model is less sensitive 
to the noise in the training data, which makes it more 
robust and easier to modify the architecture. Overall, the 
Shallow-Net model is a better choice for TB classification 
than the modified DenseNet model because it is simpler, 
has fewer parameters, and is easier to interpret.

In addition to evaluating the classification performance 
of the models, class activation maps (CAM) and LIME 
were used to investigate the explainability of the models in 
order to facilitate the interpretation of the models for TB 
diagnosis. The CAM and LIME feature importance maps of 
the proposed shallow-CNN model provided the necessary 
rationale for identifying the relevant lung regions, namely 
the lower lung regions, for TB classification. Thus, we dem-
onstrated that using the suggested shallow-CNN model to 
screen radiographs for tuberculosis could be advantageous 
for rapid and interpretable disease management.
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