
Demir et al. BMC Medical Imaging 2012, 12:37
http://www.biomedcentral.com/1471-2342/12/37
RESEARCH ARTICLE Open Access
An automated method for analysis of
microcirculation videos for accurate assessment
of tissue perfusion
Sumeyra U Demir1, Roya Hakimzadeh1, Rosalyn Hobson Hargraves1,2,4, Kevin R Ward1,4,5,6, Eric V Myer1

and Kayvan Najarian1,3,4,5*
Abstract

Background: Imaging of the human microcirculation in real-time has the potential to detect injuries and illnesses
that disturb the microcirculation at earlier stages and may improve the efficacy of resuscitation. Despite advanced
imaging techniques to monitor the microcirculation, there are currently no tools for the near real-time analysis of
the videos produced by these imaging systems. An automated system tool that can extract microvasculature
information and monitor changes in tissue perfusion quantitatively might be invaluable as a diagnostic and
therapeutic endpoint for resuscitation.

Methods: The experimental algorithm automatically extracts microvascular network and quantitatively measures
changes in the microcirculation. There are two main parts in the algorithm: video processing and vessel
segmentation. Microcirculatory videos are first stabilized in a video processing step to remove motion artifacts. In
the vessel segmentation process, the microvascular network is extracted using multiple level thresholding and pixel
verification techniques. Threshold levels are selected using histogram information of a set of training video
recordings. Pixel-by-pixel differences are calculated throughout the frames to identify active blood vessels and
capillaries with flow.

Results: Sublingual microcirculatory videos are recorded from anesthetized swine at baseline and during
hemorrhage using a hand-held Side-stream Dark Field (SDF) imaging device to track changes in the
microvasculature during hemorrhage. Automatically segmented vessels in the recordings are analyzed visually and
the functional capillary density (FCD) values calculated by the algorithm are compared for both health baseline and
hemorrhagic conditions. These results were compared to independently made FCD measurements using a
well-known semi-automated method. Results of the fully automated algorithm demonstrated a significant decrease
of FCD values. Similar, but more variable FCD values were calculated using a commercially available software
program requiring manual editing.

Conclusions: An entirely automated system for analyzing microcirculation videos to reduce human interaction and
computation time is developed. The algorithm successfully stabilizes video recordings, segments blood vessels,
identifies vessels without flow and calculates FCD in a fully automated process. The automated process provides an
equal or better separation between healthy and hemorrhagic FCD values compared to currently available
semi-automatic techniques. The proposed method shows promise for the quantitative measurement of changes
occurring in microcirculation during injury.
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Background
Understanding the distribution and circulation of blood
in capillaries has been considered a key aspect for as-
sessment of tissue perfusion [1]. Visualization and quan-
tification of changes in microcirculation has been proposed
as a potential tool in diagnosis and treatment of illnesses
and diseases such as sepsis [2], sickle cell disease [3,4],
chronic ulcers, diabetes mellitus and hypertension [5,6]. In
each of these diseases, several characteristics of the micro-
circulation such as the structure of capillaries and quality of
blood flow in the capillaries change over time [7-11]. A
recent study suggests there is value in monitoring the
microcirculation for titrating vasodilators in perioperative
use [12]. Monitoring microcirculation during resuscitation
could also be envisioned as a tool to prevent over and
under resuscitation of victims of hemorrhage and other
critical illness and injuries such as sepsis. Therefore, quanti-
tative and accurate analysis of the microcirculation is likely
to be essential if microcirculatory imaging is to be adopted
as useful tool in clinical monitoring [13].
Orthogonal polarization spectral (OPS) imaging [1,2,5]

and side-stream dark field (SDF) imaging [13,14] have
been extensively employed in the field of clinical micro-
circulatory research. OPS and SDF imaging are both
non-invasive imaging modalities and have been used to
track changes in the microcirculation on mucosal sur-
faces. Most studies have used the sublingual surfaces of
the oral cavity. These imaging techniques use green
polarized light with wavelength of 550 nm which is
absorbed by hemoglobin and makes red blood cells
visible [15,16].
To analyze microcirculatory images and videos, sev-

eral software tools have been developed. However cur-
rently available software is unable to perform real or
near real time analysis of the videos and require manual
intervention to ensure accurate results. Researchers in
the field have stated the need for improvements of
current software to expedite clinical bedside use [17].
The computer-assisted image analysis system CapImage
(Zeintl, Heidelberg, Germany) was originally developed
for traditional intravital microscopy [18], but is capable
of analysis of SDF and OPS images [19]. It uses a Line
Shift Diagram Method for measurement of velocity and
real-time movement correlation. This software tool is
capable of measuring different properties of the micro-
circulation such as blood cell velocity and capillary
density. However, it is only capable of detecting straight
blood vessels which limits its efficacy since the micro-
vascular geometry is complex. Expert users of CapImage
claim that analysis of microcirculation with CapImage is
time consuming and may only be performed off-line [20].
CapiScope, a system for the measurement of capillary

morphology and capillary blood cell velocity, requires
stable images, but lacks a stabilization function [21].
JavaCap and Capilap Toolbox are two other available
software tools which use triangulation methods to calcu-
late intercapillary distance [22,23].
Automated Vascular Analysis (AVA)—also known as

MAS (Microvascular Analysis Software, Microvision
Medical BV)—is the most current commercial software
tool developed by Dobbe et al [24] for analysis of micro-
circulation videos. The method is the most accurate
among the existing systems and performs a semi-
automated process based on image stabilization, center-
line detection and space time diagram. Despite all the
capabilities provided by AVA, it does not provide full
automation which leaves the burden of selecting the
areas of interest, configuration, initialization, filtering of
many false positives, dealing with many false negatives,
and addressing of connectivity to the user. In addition,
according to the developers of AVA, the software pro-
vides neither automatic vessel detection nor vessel diam-
eter and blood flow calculation [24]. The system, while
an improvement, requires manual editing which can take
over 20 minutes for a typical video sequence.
The aim of this study is to automate the analysis of

microcirculatory video recordings and the derivation of
Functional Capillary Density (FCD). FCD is defined as the
ratio of the area of functionally active capillaries to the en-
tire area of the image. FCD has been considered an im-
portant measurement of the microcirculation to indicate
the quality of tissue perfusion [25]. Image processing algo-
rithms are designed for this study to automatically detect
capillaries and small blood vessels in order to derive diag-
nostically useful information that may assist clinicians and
medical researchers in the future.

Methods
The methodology behind the proposed algorithm to
quantify the assessment of the microcirculation is sum-
marized in Figure 1. The process—which is not shown
in the schematic diagram—starts with the stabilization
of the video frames. The weighted mean of consecutive
frames from the stabilized video is calculated for each
five-frame block. Pre-processing, multi-thresholding
and vessel segmentation are the following steps and are
highlighted in the diagram. A more detailed diagram is
provided in Figure 2 to describe pre-processing, multi-
thresholding and segmentation algorithm. After per-
forming morphological operations such as filling and
opening, the binary images resulting from segmentation
are unioned together. If a pixel is segmented as vessel in
more than one frame, it is assigned the label of “vessel”.
Post processing includes additional morphological
operations (e.g., bridge, spur, fill) and region growing to
eliminate any possible discontinuities. Vessels with
blood flow—perfused vessels—are identified in the last
step and FCD is calculated accordingly.



Figure 1 Schematic of the proposed methodology. Proposed methodology is summarized in Figure 1. Stabilization of the videos is not
included in the schematics. After stabilization, the weighted mean of five consecutive frames is calculated and the preprocessing and
segmentation algorithms are applied on the mean frame. Averaging more than five frames results in “over-averaging” phenomena that would
eliminate some of the important features important for segmentation. Experimentally, our results indicate that the 5-frame approach provides the
best results. After the segmentation, the segmented frames are combined together to generate one single binary image and calculate Functional
Capillary Density from this binary image.
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Stabilization
The microcirculatory videos are captured by a commer-
cially available hand-held SDF device (Microscan, Micro-
vision Medical, BV). Because it is hand-held and is
highly susceptible to motion artifacts due to movement
of subject and/or device, we developed a stabilization al-
gorithm to eliminate these motion artifacts. A block
matching algorithm is developed that calculates cross-
correlation coefficients to measure the similarity of the
blocks. Block matching algorithms use a predefined size
of windows-blocks or even entire images to estimate
motion vectors. One of the disadvantages of block
matching methods is defined as 'remarkableness' of the
window content [26]. If a window does not contain dis-
tinctive details, there is a high probability of mismatch.
To avoid errors caused by ‘remarkableness’ issues, i.e.
using points for matching that have no significant image-
processing values (e.g. regular pixels inside the back-
ground) the processed blocks are checked to ensure they
include blood vessels using Laplacian of Gaussian filtering.
The stabilization process is described in detail in a previ-
ously published study [27]. Gradients of the frames are
calculated using the first order derivative of the Gaussian
function. Gradient of the Gaussian enhances images and
improves visibility of blood vessels. Distinctive features of
the images, which are typically the branching points of
blood vessels, are selected and assigned as control points
to overcome remarkableness issues. Control points are
selected which are known to belong to capillaries to calcu-
late the transformation between two consecutive frames.
For this purpose, a 3-by-3 Laplacian filter which calculates
second order derivatives is applied to the output of the
Gaussian Gradient.
The maximum values from seven areas of the frame

are selected as control points. Then, around the control
points, 25 × 25 pixel windows are selected as sub-
regions. The cross-correlation is calculated between
these sub-regions in the current frame and a 40 × 40
pixel window around these sub-regions in the following
frame. The size of the windows discussed above was
optimized based on a previous visual empirical assess-
ment of the algorithm over a set of microcirculation
videos. The frames are registered according to the
results of correlation calculations. Since the control
points are defined for the first frame and they are
tracked through adjacent frames, Laplacian filtering is
not repeated throughout the algorithm. If any of the
defined control points leaves the current frame due to
excessive motion, new control points are defined using
the same method.



Figure 2 Detailed diagram of pre-processing and vessel segmentation. Figure 2 provides a detailed diagram of preprocessing and
segmentation steps for different threshold levels. It starts with the averaged frame. For 10 different threshold levels, the parameters of CLAHE
(Contrast Limited Adaptive Histogram Equalization) and median filter vary throughout the process. For the first threshold level, the window size
of CLAHE is kept small. Median filter is applied right after histogram equalization with a small filter size such as 3 × 3. Median filtering is followed
by image adjustment. The preprocessed image is converted to binary image using the first threshold level. Euclidean Distance Transform (EDT) is
calculated for the binary image. Diameter and angle parameters are extracted from EDT and with the addition of contrast ratio; three parameters
are used to determine if a pixel belongs to a vessel.
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Preprocessing, multi-thresholding, and segmentation
After the stabilization of the video recordings, the
weighted mean of five consecutive frames is calculated
to improve connectivity of the blood vessels. The frame
in the middle has the highest weight in this process.
Averaging the frames is followed by preprocessing algo-
rithms. The vessel extraction algorithm is based on mul-
tiple level thresholding. Preprocessing is repeated at
each threshold with different parameters.
Video contrast and clarity vary widely from source to

source and necessitate preprocessing in order to gener-
ate images that will yield accurate results. To enhance
the local contrast, Contrast Limited Adaptive Histogram
Equalization (CLAHE) is performed on microcirculation
images. CLAHE partitions the image into small regions,
called ‘tiles’, and applies histogram equalization to each
tile in order to even out the overall gray level distribu-
tion of the image [28]. Histogram equalization is fol-
lowed by median filtering. To remove noise, median
filtering is a widely preferred method in the literature
[29]. In this application, the purpose of applying median
filtering is smoothing.
The window sizes of adaptive histogram equalization

and median filtering are subject to change at each



Figure 3 Method of validating vessel pixels. A vessel candidate
pixel is labeled as p in Figure 3. The output of EDT is used to find the
nearest background pixel to p, bp. For each of the 24 neighboring
pixels in the 5 × 5 neighborhood around p, n1 − n24, the nearest
background pixel is found, bn, and used to calculate the diameter,
angle and contrast ratio values. The bn1-24 having the greatest
distance from bp is considered the opposite background pixel, bmax,
and the distance is the diameter, d, of the vessel. If d is less than Pd
then the angle, θ, is calculated between bp, p and bmax and is used to
validate the distance by ensuring that bp and bmax are on opposite
sides of the vessel (θ must be greater than Pθ). Finally, the contrast
ratio between p and bmax is calculated and if greater than Pc, the
candidate pixel is considered a valid vessel pixel. Since the found
vessels lie along the center of the actual vessel, the vessel must be
reconstructed using the found diameter and pixel locations.
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threshold level. At low threshold levels, in order to in-
clude only wide and clear vessels, histogram equalization
is applied in smaller windows. The median filter size is
kept large at these low threshold levels. As the threshold
level increases, the result of the process is a darker
binary image with almost all vessels and background
included. Window size of adaptive histogram equalization
is increased and median filter size is reduced to enhance
the thinner vessels. Without these steps results will suffer
as vessels may not be fully segmented and flow correctly
detected. This preprocessing is followed by thresholding.
Vessel segmentation is based on verifying each pixel at

multiple threshold levels as vessel. The method is modi-
fied from a pixel verification method proposed by Jiang
et al. using retinal images [30]. The pre-processed
images are converted to binary images using multiple
threshold levels resulting in multiple binary images. Eu-
clidean Distance Transform (EDT) is created for each
binary image. EDT calculates the distance of nearest
background pixel for each object pixel. The coordinates
of the nearest background pixel is the second output of
the transform. For each pixel of each binary image, three
different features are calculated using the outputs of the
EDT and the gray-level intensity values of the pixels.
Two of these parameters are the diameter Pd and the
angle Pθ of the vessel, which are considered as geomet-
rical features. The gray level intensity values of pre-
processed images are used to calculate the third feature,
PC, which is the contrast ratio identifying the ratio of in-
tensity across background and blood vessel pixels. These
three features serve to determine if a pixel in the image
is indeed a vessel pixel. Pd limits the size of the vessel to
ensure it is a capillary. Pθ ensures curvilinear structure
to the pixel, and excludes any anomalous pixels because
of physiological improbabilities. Pc, ensures contrast be-
tween background and vessel pixels.
Figure 3 provides a visual depiction of these para-

meters. 5*5 neighborhood of a candidate pixel is
included in the calculations. The current pixel is referred
to as ‘p’, which is a vessel candidate. Its 24 neighbors are
defined as N1 − N24. The nearest background pixel to ‘p’
is ‘bp’ and the nearest background pixels to each of the
24 neighbors are ‘bn1 − bn24’. The bn1-24 having the great-
est distance from bp is considered the opposite back-
ground pixel, bmax. The maximum Euclidean distance
from ‘bp’ to ‘bn1-bn24’ is decided to be the diameter of
the candidate pixel:

d ¼ maxbj∈bn1�bn24
�bp; bj

�� �� ð1Þ

where �bp; bj
�� �� is the distance between bp and bj. The

parameter θ is the angle between the background pixels
‘bp’ and ‘bn1-bn24’ according to Figure 3. The angle is cal-
culated using the cosine rule. If d is less than Pd then
the angle, θ, is calculated between bp, p and bmax. The
maximum angle derived from the 24 neighbor pixels is
used as ‘θ’:

θ ¼ maxbj∈bn1�bn24 cos
�1

�p; bp
�� ��2 þ �p; bj

�� ��2 � d2

2 �p; bp
�� �� �p; bj

�� ��
 !

ð2Þ

Finally the third feature is the ratio of gray level values
of nearest background pixels and the vessel candidate ’p’:

C ¼ maxbj∈bn1�bn24

GL bj
� �

GL pð Þ ð3Þ

where GL(p) is the gray-level intensity value of current
pixel ’p’. To calculate contrast ratio, images with enhanced
contrast are used. Therefore, GL in Equation 3 stands for
the gray level of the output of the CLAHE.
To verify the vessel candidate pixel, ’d’ needs to be less

than pre-defined Pd to avoid large vessels, ’θ’ needs to be
larger than Pθ to assure curvilinear structure and the
calculated contrast ratio needs to be higher than PC to
remove background noise. If the pixel in the binary
image is black and it meets the criteria defined by three
parameters Pd, Pθ and PC, it is verified to be a vessel
pixel. After repeating the same procedure for all thresh-
old levels, the segmented images of each threshold level
are combined resulting in one segmented binary image
for each frame.
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The parameters, Pd, Pθ and PC were selected from
multiple experiments using a set of training videos. Pd
controls the maximum diameter of the blood vessels to
accept. It is determined based on the diameter of blood
vessels and capillaries to be included in the microcircu-
lation. Pθ is another geometric parameter to ensure
curvilinear structure of the vessels and is empirically
derived.

Region growing
Since the segmentation algorithm is based on pixel veri-
fication, it is possible to have isolated pixels in the re-
sult. To prevent that, binary morphological operators
are used before region growing. The morphological
operators include filling the isolated interior pixels and
opening.
The region growing algorithm is developed to over-

come disconnectivity of blood vessels. First, the final
segmented image is divided into 35∗35 windows to de-
termine the orientation of segmented vessel within the
window. The vessel is allowed to grow in the computed
direction if the gray level is within the range of average
gray level of vessel pixels in the window ±0.5∗standard
deviation.

FCD calculation
Segmentation processes described up until this stage de-
tect all blood vessels at each frame of the video record-
ing. To provide quantitative information on blood flow,
the vessels through which blood is flowing must be iden-
tified. To that end, the difference of consecutive segmen-
ted frames is calculated pixel by pixel. If the summation
of difference for twenty segmented frames is higher than
a threshold value, the pixel is assigned as an active blood
vessel.
FCD is currently one of the main parameters used to

evaluate the microcirculation. FCD can be calculated
using two different approaches: one is completely man-
ual by gridding the frame and counting the number of
vessels crossing the grid lines; the second approach cal-
culates the ratio of perfused vessels to the total surface
using a software tool [31]. FCD is calculated automatic-
ally in this study by dividing the area of active vessels to
the total area of interest. It is much easier to form the
skeleton of the network of active capillaries and calculate
the length of this skeleton to form the density measure.
However, since the width/thickness of capillaries along
this network would be inconsistent (on the actual sub-
lingual surface, the captured video, and in the processed
image), the density measure calculated on this length
would be the least reliable measure, as it does not in-
corporate the changes in the thickness of the capillary
and therefore the true extent of circulation inside the ca-
pillary. The area-based density measure, on the other
hand, since it incorporates the thickness of the capillar-
ies into the calculation, is not susceptible to this issue.
We have also included the length-based FCD calculation
in this paper for comparison with the output from AVA.

Results and discussion
Results
The proposed experimental algorithm and the software
product Microcirculation Analyzer (MCA) were applied
to videos acquired from a library of microcirculatory
videos of a previous animal study. The protocol was
approved by the Virginia Commonwealth University In-
stitutional Animal Care and Use Committee in accord-
ance with the National Institutes of Health Guide for the
Care and Use of Laboratory Animals (National Institutes
of Health Publication 86-23, revised 1996). In this ani-
mal study, sublingual microcirculatory videos were taken
from nine healthy juvenile swine at baseline as well as
after 40% of the animal’s blood was removed. All animals
were under a state of general anesthesia. Twenty frames
from each video were used for the assessment of the
video recordings. The parameters at multi-thresholding
stage are defined empirically. Specifically, a series of vid-
eos were used as the training set in which we change the
values of these parameters over a reasonable range and
choose the values that give the parameters providing the
best segmentation results. In this study, “the best
segmentation result” was visually evaluated. According
to this process the image features are obtained; Pd =13,
Pθ =130 and PC = 1.17. The angle is calculated in
degrees. In order to capture desired vessels and avoid
segmenting larger structures like venules, Pd =13 corre-
sponds to a vessel diameter of about 20 μm at the reso-
lution captured by the test camera. An original frame
from sublingual microcirculatory video of a healthy sub-
ject is displayed in Figure 4. Active capillaries segmented
using MCA are highlighted in Figure 5.
FCD parameters are calculated from SDF videos for

nine subjects in both baseline (PPV = 1) and hemorrhage
(PPV < 1) conditions. As expected, a significant decrease
in FCD is noticed during hemorrhage recordings with re-
spect to baseline videos. For MCA, a paired-samples t-test
was conducted to compare FCD values of healthy baseline
and hemorrhage video recordings. There was a significant
difference in the scores for healthy baseline (μ = 12.68, σ =
1.479, area-based; μ = 3.26 × 10-5, σ = 5.93 × 10-6, length-
based) and hemorrhage (μ = 7.35, σ = 2.139, area-based;
μ = 1.99 × 10-5, σ = 5.53 × 10-6, length-based) conditions;
with t8 = 6.50 and p-value = .000189. These results sug-
gest that the proposed algorithm, MCA, can successfully
derive quantitative information from microcirculation vid-
eos. Specifically, the results suggest that microcirculatory
alterations caused by hemorrhage can be identified by
analyzing sublingual microcirculatory video recordings.



Figure 4 An example frame from a healthy subject. An example
frame from a sublingual microcirculatory video captured from a
healthy baseline subject is presented.
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FCD percentages for nine subjects for healthy baseline
and hemorrhage conditions are shown in Table 1.
The same videos were analyzed using the currently

available semi-automated tool, AVA, with manual edit-
ing. Analysis was performed using the method described
in the manufacture’s tutorial of the product. All videos
were analyzed in an identical format. The microcircula-
tion videos are first automatically analyzed using the
software tools and then manual interaction with the soft-
ware for manipulation of the segmentation results must
be performed to remove the large vessels, false positives,
and vessels without flow. Figure 6 provides and example
of the microcirculation after hemorrhage and can be
compared to the healthy (baseline) microcirculation in
Figure 4.
Videos were analyzed by two experts previously trained

with AVA and the results for each video averaged in the
analysis of FCD. These individuals were blinded to FCD
values derived from the fully automated method. The ana-
lysis resulted in a Kappa coefficient of 0.9 (very good
Figure 5 Segmented active capillaries of the frame in Figure 4.
The result of the proposed algorithm highlights all active capillaries
from the original frame in Figure 4.
agreement). The Kappa coefficient is a statistical measure of
inter-rater agreement. The FCD results of this analysis are
provided in Table 2. A significant difference is also noticed
in these scores for healthy baseline conditions (μ = 12.26,
σ = 1.759, area-based; μ = 1.65 × 10-5, σ = 5.485 × 10-6,
length-based) versus hemorrhage conditions (μ = 8.56,
σ = 1.432, area-based; μ = 1.20 × 10-5, σ = 4.124 × 10-6,
length-based); with t8 = 4.19 and p-value = 0.003.
It should be pointed out that even though AVA allows

manual interaction, the version we had access to does
not allow the user to draw the capillaries to be included.
If the user sees that a capillary has not been identified,
the user must define an area that the vessel resides in
and then have the program outline the vessel. However,
in some instances, the program will still not outline the
vessel for inclusion in the FCD calculations. The user
cannot manually force the outlining of vessels.
To clearly understand the results generated by the

proposed experimental algorithm (MCA) and heavily edited
AVA, a chart is generated showing the FCD values for
healthy baseline and hemorrhage conditions. Figure 7 shows
the results from the heavily edited AVA software. The FCD
values from subjects in the healthy baseline condition
(PPV = 1) are labeled as baseline. Results of MCA are dis-
played in Figure 8. The decrease in FCD values for
hemorrhage (PPV < 1) is clearly visible for each subject for
the FCD values calculated by the experimental MCA auto-
mated algorithm. Figures 9 and 10 provide an example of
the overlay between MCA and the edited semi-automated
AVA method. However, comparing the compilation of data
shown in Figures 7 and 8 and Tables 1 and 2, we conclude
that MCA provides a better separation of FCD values be-
tween healthy baseline and hemorrhage. Furthermore, a
Bland-Altman comparison of heavily edited AVA vs. fully-
automated MCA (Figure 11) shows that MCA is capable of
producing results in line with those achieved from edited
AVA.

Discussion
This study presents an entirely automated method, MCA,
to derive quantitative information from microcirculatory
videos in near real-time. Currently available techniques for
analysis of the microcirculation, in their present state, do
not appear to be practical in the clinical setting due to the
need for significant manual interaction with the software in
order to process the image and determine FCD. The signifi-
cant difference in calculated FCD values across healthy
baseline and hemorrhage shows that MCA has the poten-
tial for analyzing microcirculation videos in the clinical set-
tings. Although the sample size of this study is relatively
small, the algorithm demonstrates promise in its ability to
rapidly provide quantitative information. Future studies
will test the MCA algorithm on larger datasets—including
human microcirculation videos—and improved accordingly.



Table 1 Calculated FCD values using the automated MCA algorithm, including both area and length based results

Baseline (PPV = 1) Hemorrhagic (PPV < 1) Difference

FCD (Area) % FCD (Length)
mm/mm2

FCD (Area) % FCD (Length)
mm/mm2

FCD (Area) % FCD (Length)
mm/mm2

Subject 1 12.16 2.35 × 10-5 9.72 1.42 × 10-5 2.44 9.28 × 10-6

Subject 2 14.99 3.35 × 10-5 7.32 1.48 × 10-5 7.67 1.87 × 10-5

Subject 3 13.97 3.10 × 10-5 11.38 3.26 × 10-5 2.59 -1.54 × 10-6

Subject 4 11.95 2.56 × 10-5 5.92 1.97 × 10-5 6.03 5.91 × 10-6

Subject 5 10.21 3.10 × 10-5 7.58 2.02 × 10-5 2.63 1.08 × 10-5

Subject 6 13.81 3.75 × 10-5 4.41 2.12 × 10-5 9.40 1.63 × 10-5

Subject 7 11.90 4.01 × 10-5 7.38 1.65 × 10-5 4.52 2.36 × 10-5

Subject 8 13.49 4.04 × 10-5 7.05 1.77 × 10-5 6.44 2.28 × 10-5

Subject 9 11.65 3.11 × 10-5 5.37 2.26 × 10-5 6.28 8.52 × 10-6

Mean 12.68 3.26 × 10-5 7.35 1.99 × 10-5 5.33 1.27 × 10-5
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To overcome the variance among different video recordings,
machine learning techniques, in particular neural networks
and support vector machines that show superior perform-
ance in detection of elongated vessel-like objects in both bio-
medical image processing applications [32,33] as well as
other image processing applications [34], will be applied and
algorithm parameters adjusted accordingly. The use of ma-
chine learning techniques provide for a means to compen-
sate for variations due to differences in factors such as
lighting, pressure, video quality and specific machine/camera
used for imaging. Notwithstanding the small sample size, the
results show promise for an automated system that derives
diagnostically important information from microcirculation
videos.
MCA and semi-automated AVA both show a signifi-

cant decrease in FCD values for the hemorrhagic sub-
jects. Even though FCD values calculated using semi-
automated AVA are statistically different for the healthy
and hemorrhagic cases (μ=3.78, σ=2.267, t8=5.0, p-value =
1.1 × 10−3), the difference is not consistent (Figure 7). As
noted in Figure 9, the overlay of analyzed results
Figure 6 Example of hemorrhage subject video source. An
original frame from sublingual microcirculatory video of a
hemorrhage subject.
demonstrates very close performance between the auto-
mated MCA algorithm and that of the heavily edited AVA
method. FCD values during hemorrhage generated by
MCA were consistently lower than FCD values from the
healthy baseline state (Figure 8). Visual inspection of the
videos confirmed the ability of MCA to identify more ves-
sels without flow and thus not include them in the deter-
mination of FCD. A potential limitation to this finding is
new version of AVA that reportedly allows users to add
missed vessels by manual drawing. We did not have access
to this version. While use of this newer version may have
reduced the differences between semi-automated AVA
and the fully automated MCA, this improved version of
AVA still requires editing and interaction of the user with
the software.
While the approach taken with MCA cannot be con-

sidered actual real-time, the 20 second wait for results
versus the 20-40 minutes of manual interaction required
with semi-automated AVA makes the use of MCA near
real-time and may thus be appropriate in the future for
bedside point-of-care decision making. Additionally, the
use of MCA would negate the considerable training that
must be provided to the AVA user in order for them to
be able to properly identify the active vessels in the results.
This is in contrast to the proposed automated system,
which incorporates that knowledge in the algorithm.
In the future, the automated method could be easily

integrated into existing SDF or OPSI hardware systems
which would allow real-time bedside determinations of
FCD and potentially other microcirculatory parameters
such as flow quantification. It is likely that in order to
use SDF or OPSI derived FCD measures to affect care,
an automated and reproducible software approach to
analysis will be required for regulatory approval of such
an approach.
Recent automated capillary detection methods such as

Bezemer et al. [35] demonstrated impressive speed in its
analysis. The authors of this method, however, indicate that



Table 2 Calculated FCD values using semi-automated software, AVA

Baseline (PPV = 1) Hemorrhagic (PPV < 1) Difference

FCD (Area) % FCD (Length)
mm/mm2

FCD (Area) % FCD (Length)
mm/mm2

FCD (Area) % FCD (Length)
mm/mm2

Subject 1 13.77 1.63 × 10-5 9.72 9.52 × 10-6 4.05 6.73 × 10-6

Subject 2 14.50 2.15 × 10-5 7.32 1.47 × 10-5 7.18 6.80 × 10-6

Subject 3 10.81 1.72 × 10-5 11.39 1.62 × 10-5 -0.58 9.75 × 10-7

Subject 4 11.95 2.41 × 10-5 6.68 1.91 × 10-5 5.27 5.00 × 10-6

Subject 5 9.44 2.18 × 10-5 9.21 9.65 × 10-6 0.23 1.22 × 10-5

Subject 6 13.38 1.00 × 10-5 7.47 8.29 × 10-6 5.91 1.72 × 10-6

Subject 7 10.15 1.75 × 10-5 8.36 1.43 × 10-5 1.79 3.15 × 10-6

Subject 8 13.23 1.23 × 10-5 8.06 8.22 × 10-6 5.17 4.08 × 10-6

Subject 9 13.07 8.18 × 10-6 8.82 8.04 × 10-6 4.25 1.35 × 10-7

Mean 12.26 1.65 × 10-5 8.56 1.20 × 10-5 3.70 4.53 × 10-6
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performance is limited by high cell densities and velocities,
which severely impede the applicability of this method in
real SDF images. We believe this is due to the fact that many
factors and thresholds in this method were set to fixed num-
bers and that they require adjustment from one video to
Figure 7 FCD results calculated from heavily edited AVA. The FCD valu
hemorrhage conditions are displayed. The healthy condition FCD values ar
not consistent. a: FCD results (area based) from heavily edited AVA show in
hemorrhagic (PPV < 1) cases. b: FCD results (length based) from heavily ed
another (just as in AVA). Again, these issues form the basis
for the MCA approach as a means of reaching true automa-
tion. While we used a binary assessment of flow (flow or
no-flow) in identifying functional capillaries, improvements
in assessing flow beyond this simple method may be helpful.
es calculated from heavily edited AVA for both healthy baseline and
e labeled as baseline. The change in FCD values during hemorrhage is
consistent separation between the healthy (baseline, PPV = 1) and
ited AVA.



Figure 8 FCD results calculated using the proposed algorithm (MCA). The FCD values calculated using the proposed algorithm for both
healthy baseline and hemorrhage conditions are displayed. The healthy condition FCD values are labeled as baseline. The decrease in FCD values
for each subject during hemorrhagic is obvious in the provided figure. a: FCD results (area based) from the proposed automated system show
better and consistent separation between healthy (baseline, PPV = 1) and hemorrhagic (PPV < 1) cases. b: FCD results (length based) from the
proposed automated system show good separation, but demonstrate the problem with length based FCD calculation where vessel width is not
taken into consideration as it is with area based FCD.

Figure 9 Overlay of proposed automated method onto heavily
edited AVA results showing a high degree of similarity. Results
from proposed automated method (green) superimposed over
results from heavily edited AVA (red/black). Proposed method
returns results 60 to 120 times faster than manual editing in AVA
(20 seconds vs. 20-40 minutes).

Figure 10 Frame of video used for analysis in Figure 9. An
example frame of the video used to generate Figure 9 in both MCA
and heavily edited AVA.
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Figure 11 Bland-Altman plots showing validity of fully-automated MCA as a measurement tool vs. current “gold standard” of heavily
edited AVA (baseline (a) and hemorrhagic (b). a: Bland-Altman plot showing correlation between heavily edited AVA and fully-automated
MCA for baseline (PPV = 1) subjects. b: Bland-Altman plot showing correlation between heavily edited AVA and fully-automated MCA for
hemorrhagic (PPV < 1) subjects.
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This might result in improved accuracy and compensation
for some of the mechanical shortcomings of image acquisi-
tion using the camera technology, which, is capable of pro-
ducing pressure related flow artifacts.

Conclusions
A suggested algorithm to analyze microcirculation video
recordings based on advanced machine learning is pro-
posed which is capable of identifying active capillaries and
calculating FCD parameters automatically. The approach
is capable of detecting significant changes in FCD pro-
duced by hemorrhage and are comparable to a heavily
manually edited commercially available software product.
Future work will focus on adjusting the algorithm para-
meters on larger datasets and improving accuracy as well
as developing improved methods of quantifying blood
flow. It is hoped that these expanded methods and ana-
lyses will lead to the ability to derive diagnostically import-
ant decisions from the microcirculatory video recordings
as well as to guide therapeutic interventions.
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