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Abstract

Background: Presented is the method “Detection and Outline Error Estimates” (DOEE) for assessing rater
agreement in the delineation of multiple sclerosis (MS) lesions. The DOEE method divides operator or rater
assessment into two parts: 1) Detection Error (DE) -- rater agreement in detecting the same regions to mark, and 2)
Outline Error (OE) -- agreement of the raters in outlining of the same lesion.

Methods: DE, OE and Similarity Index (SI) values were calculated for two raters tested on a set of 17 fluid-
attenuated inversion-recovery (FLAIR) images of patients with MS. DE, OE, and SI values were tested for
dependence with mean total area (MTA) of the raters' Region of Interests (ROIs).

Results: When correlated with MTA, neither DE (ρ= .056, p=.83) nor the ratio of OE to MTA (ρ= .23, p=.37), referred
to as Outline Error Rate (OER), exhibited significant correlation. In contrast, SI is found to be strongly correlated with
MTA (ρ= .75, p< .001). Furthermore, DE and OER values can be used to model the variation in SI with MTA.

Conclusions: The DE and OER indices are proposed as a better method than SI for comparing rater agreement of
ROIs, which also provide specific information for raters to improve their agreement.

Keywords: Multiple sclerosis, Detection and outline error estimates, Rater agreement, Operator agreement, Metric,
Jaccard Index, Similarity index, Measure, Index, Kappa, Lesion, MRI, ROI
Background
Multiple operators are often used to draw regions of
interest (ROIs) on medical images when the workload
would be too great for a single operator. When using
multiple operators, it is desirable to have the ROIs
from each to be similar. There are multiple measures
available to assess inter-rater variability, such as
Kappa, Jaccard’s Index (JI), Similarity Index (SI),
Hausdorff Distances, Conformity and Sensibility, etc.
[1-6]. We want to be able to assess an operator’s (or
automated method’s) ability to create lesion ROIs,
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reproduction in any medium, provided the or
using the ROIs they created. However, for any assess-
ment we should consider whether some test scans are
easier or harder than others to achieve good mea-
sured agreement on. An ideal measure would solely
reflect the operator’s ability, and not the difficulty of
the underlying test scans.
One of the original and common results of multiple

sclerosis lesion segmentation is the determination of
the total lesion volume for an individual subject. A
center may validate operators by their ability to draw
ROIs that are in agreement with the overall lesion vol-
ume of a gold standard analysis. Fortunately, this
intra-observer agreement was not found to be signifi-
cantly correlated with lesion volume [7]. However, this
only assesses an operator’s ability to calculate total le-
sion volume; it does not make a strong statement
about the ability of the operator to produce ROIs
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which agree with a set of ground truth ROIs, since
whether small lesions are even marked has little im-
pact. For this purpose, Valmet [8] or STAPLE (Simul-
taneous Truth and Performance Level Estimation) [9]
would be a better choice.
SI is perhaps the most commonly used index and is

defined as two times the area of the intersection of
the raters' ROIs, divided by the sum of the area of the
raters ROIs. Unfortunately, the lesion burden (total le-
sion volume) of MS patients whose scans are used for
the comparison of operators' ROIs has been observed
to affect an operator's or algorithm's agreement level,
with an index such as SI [10-14]. In short, scans
depicting high lesion load are “easier” than scans
depicting low lesion load for operators to achieve high
SI agreement. This is partly because scans depicting
high lesion burden will typically have unambiguous
large lesions that are hard for raters to disagree in
marking. Hence, it is difficult to assess raters or auto-
mated methods against one another with SI if they are
evaluated on different sets of scans having different le-
sion burdens. This is the usual case when results are
published in the literature, using that center’s data set.
Udupa et al. [3,4] used measures which included an
agreement by the raters to mark the same region in
their ROIs (detection), and an agreement with respect
to how those regions were outlined. Our approach will
re-express SI in terms of detection and outline error
measurements so that SI's dependency on lesion bur-
den can be well understood.
Our belief is that, unlike SI, our detection and out-

line error measures won't show a strong dependency
on the underlying lesion burden of the scans used in
comparing a pair of raters. While scanner issues such
as the type of scan acquired and scan quality will still
have an impact on operator agreement, reducing the
influence of lesion burden (a study population condi-
tion) will represent a major improvement for the
evaluation of operators. Our development and testing
will be performed with operators measuring hyperin-
tense fluid-attenuated inversion-recovery (FLAIR) MRI
lesions associated with MS. However, with appropriate
testing our method should be directly applicable to
ROIs used to measure other hyper- or hypo-intensities,
and can also be used to compare a single rater or al-
gorithm to a gold standard. Additionally, we present
two graphs for use in comparing a pair of raters. The
first compares the raters detection errors (differences)
based on region size. The other compares the relative
differences between raters in the outline of a lesion.

Theory
Similarity Index: SI is commonly defined as 2 times the
area of the intersection of the raters' ROIs, divided by
the sum of the area of the raters ROIs:

SIðR1;R2Þ ¼ 2 R1 \ R2j j
R1jþjR2j j

where | R1 \ R2| represents the area of the intersection
of rater 1 and rater 2's ROIs, |R1| represents the area of
rater 1's ROIs, and |R2| represents the area of rater 2's
ROIs. Our approach is 2-dimensional to be reflective of
how a human operator views and marks the images. Let-
ting MTA (Mean Total Area) of the two raters' ROIs
equal 1/2(|R1| + |R2|), we express SI as:

SIðR1;R2Þ ¼ R1 \ R2j j
MTA

If the ROIs from both raters are overlaid on the same
image slice, the union of the ROIs will typically mark
several connected regions on the image slice. We classify
each connected region from the union of the raters'
ROIs as one of three types: CR1, CR2, or CR12, depend-
ing on whether a region is from an ROI(s) only from
rater 1, only from rater 2, or a combination of from both
raters, respectively. In Figure 1 (A), we present several
sample ROIs and provide classifications of connected
regions in Figure 1 (B).
Detection Error and Outline Error: Our method for

measuring rater agreement calculates the sum of the
pixels that were marked by only one rater. We define
Detection Error (DE) as the total area of all CR1 and
CR2 regions:

DE ¼
X

cr2CR1orCR2 crj j;

where |cr| represent the area of the connected region,
cr; and cr 2 CR1 or CR2 represents the set of connected
regions that can be labeled as either CR1 or CR2. We
define Outline Error (OE) as the total difference between
the union and intersection of the CR12 ROIs:

OE ¼
X

cr2C12 crj j � jR1ðcrÞ \ R2ðcrÞj;

where |R1(cr)| and |R2(cr)| represent the areas of rater 1
and rater 2's ROIs within cr, respectively. For a con-
nected region, either DE or OE is calculated but not
both. In Figure 1 (B) we also calculate DE and OE for
the ROIs in Figure 1 (A). Simple algebra relates DE and
OE with SI:

SIðR1;R2Þ ¼ 1� 1
2

� �
OE
MTA

� 1
2

� �
DE
MTA

In Figure 1 (C) we demonstrate the calculation of SI
using the original equation and our equation using DE
and OE.
While it is not clear whether DE will vary with MTA,

we expect that OE will increase with the number or



Figure 1 (A): illustrates ROIs drawn from two different raters. Regions 1, 6, and 7 are examples where both raters agree in the detection of a
lesion but disagree on how it should be outlined; we designate these regions as type CR12. Regions 2, 3, and 4 are examples where only rater 1
(blue) drew an ROI, thus we designate these regions as type CR1. Finally, only rater 2 (red) drew an ROI for region 5, thus we designate this
region as type CR2. (B): (table). For each region depicted in Figure 1 (A), we calculate sizes of rater 1’s ROIs, rater 2’s ROIs, the intersection of their
ROIs, and the union of their ROIs. For regions where only one of the raters drew an ROI, (types CR1 and CR2) we calculate the contribution to DE
and not OE. In this case, DE will equal the size of the only drawn ROI. For regions where both raters drew an ROI (type CR12), we calculate the
contribution to OE and not DE. In this case, OE will equal the area of the difference between the union and intersection of the ROIs. The bottom
row shows the total area for the ROIs drawn by both raters, the total area of intersection and the union of the raters' ROIs, together with the DE
and OE errors for the set of ROIs. These values can be used to calculate SI directly, or in terms of DE and OE. (C): Calculation of SI from traditional
equation and in terms of DE and OE. (D): A plot of the total number of regions of types CR1 and CR2 smaller than a given area is shown for the
ROIs displayed in Figure 1 (A). This plot can be useful in determining the average number of detection differences above a specified lesion size
threshold. For instance, we have 1 detection error for ROIs larger than 3. We would expect two errors between raters if we threshold their ROIs to
be larger than 2. (E): is the histogram of (Area of Rater 1’s ROI – Area of Rater 2’s ROI) / Area of the Union of Rater 1 and Rater 2 ROIs (i.e.,
(column 3 – column 2) / column 5, from the table (B), for regions of type C12. If more regions were used, this graph would begin to form a bell-
shaped curve. Regions where experts closely agree in outlining a curve would contribute to the center of the graph, while a large disagreement
would contribute to one of the edges.
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average size of ROIs for a scan (i.e., an increase in
MTA). Therefore, we define the Outline Error Rate
(OER) as OER=OE/MTA, and express SI as:

SIðR1;R2Þ ¼ 1� 1
2

� �
OER� 1

2

� �
DE
MTA

Our assumption is that DE and OER are descriptive
measures of the raters' agreement level across images for
a full range of lesion burdens, and can be considered
constants. Hence, this assumption implies that SI is not
constant across a range of lesion burdens. Letting
meanDE and meanOER represent the mean value of DE
and OER, respectively, we can estimate SI for images
with varying lesion burdens (measured in terms of
MTA):

SIestimate R1;R2ð Þ ¼ 1� 1
2

� �
meanOER

� 1
2

� �
meanDE
MTA

The goal of calculating meanOER and meanDE is to pro-
vide measures for rater assessment that are better than
current indices by virtue of having reduced dependence on
MTA.
SI is closely related to Kappa and JI. SI can be shown

to be the limit of Kappa [4] when the agreement be-
tween operators includes an increasingly large number
of voxels not marked as a lesion by either rater. Further-
more, SI can be expressed in terms of JI as SI = 2 JI /
(1 + JI), when JI is defined as equaling the size of the
intersection divided by the size of the union of the
raters' ROIs. The relationship between SI, JI, and Kappa
is nearly linear for the general range we expect in com-
paring operators’ ROIs, which typically have SI values
between .35 and .85.
Cumulative Detection Error: We expect operators to

have a greater number of detection disagreements deter-
mining whether small hyperintense regions should be
marked as lesions, rather than larger regions. We create
a Cumulative Detection Error graph to answer the ques-
tion: "How many ROIs were drawn by only one rater
with the ROI sizes greater than a given threshold?" The
graph is the number of CR1 and CR2 regions with ROI
areas greater than a given area threshold, and decreases
with increasing threshold values. In Figure 1 (D), we plot
the total number of detection errors for the ROIs in
Figure 1 (A). Similarly, we could plot the Cumulative
Detection Error graphs for CR1 and CR2 separately.
Together, these graphs would indicate if one rater was
more lenient or strict than the other rater in deter-
mining whether a small hyperintense region should be
marked as a lesion.
Outline Error Distribution: We are also concerned
with whether one rater consistently creates smaller or
larger ROIs than the other. Our approach is to plot the

histogram of R2j j�ð jR1jÞ
R1[R2j j for all CR12 regions, which we

term the Outline Error Distribution graph. Figure 1 (E)
shows the Outline Error Distribution graph for the ROIs
in Figure 1 (A), which had only 3 CR12 regions. A more
typical usage would have hundreds or thousands of
CR12s. An ideal distribution would be a thin peak
located at 0.

Methods
Subjects and MR acquisition
FLAIR scans from 17 participants, aged 18–80 years,
with Expanded Disability Status Scores (EDSS) [15] (0–
8.5) fulfilling the criteria for clinically definite MS [16]
were analyzed by two raters. Informed consent was
obtained from all participants, and the study was
approved by the University at Buffalo's Health Science
Institutional Review Board. Scans were performed on a
3 T GE Signa Excite HD 12.0 Twin Speed 8-channel
scanner (General Electric, Milwaukee, WI) using a GE
multi-channel head and neck coil. FLAIR scans had
TE= 120 ms and TR= 8500 ms. Image voxel size was
.94×.94×3 mm3. A full description of the scanning proto-
col was described in a recently published study [17].
Both raters were physicians with several years of MS re-
search experience, but had only three months experience
at our lab at the time of the experiment. Lesion contour-
ing was performed with JIM 4.0 software (Xinapse Sys-
tems Limited, Aldwincle, U.K.), according to established
lab guidelines. Hyperintense lesions were outlined using
JIM's semi-automated contouring tool, which allows an
operator to fully specify a lesion outline by clicking the
mouse only near the edge of the lesion; a few outlines
(< 2%) required manual editing to achieve a proper le-
sion contour. Software was written in-house using
MATLAB (Natick, MA).

Processing
For each image slice analyzed by both raters, the closed-
path line segment JIM ROIs are used to form image
masks. The lesion outlines are converted to an image
mask by up-sampling the image by a factor of 5 in both
the x and y directions to minimize the possibility that a
single closed path ROI forms multiple regions, which can
occur if an ROI has a narrow section (less than one pixel)
between two larger sections. A binary “or” of the two
masks is used to form the union. Each distinct separate re-
gion of the union “or” operation is referred to as a “Con-
nected Region” (CR). The connected regions are labeled
as CR1, CR2, or CR12, based on whether the CR was form
by the ROIs of rater 1, rater 2, or raters 1 and 2.



Wack et al. BMC Medical Imaging 2012, 12:17 Page 5 of 10
http://www.biomedcentral.com/1471-2342/12/17
Evaluation criteria
DE, OE, OER, and SI were compared to MTA both
graphically and by Spearman rank correlation. The mean
values of OER and DE were used to express SI as a func-
tion of MTA, and compared to the true values of SI both
graphically and using Pearson linear correlation. We also
compare our fit of SI to linear and quadratic fits of SI as
a function of MTA. Finally, we demonstrate the utility of
the Outline Distribution Error and Cumulative Detec-
tion Error graphs.
Results
Mean MTA for the 17 scans was 5028 mm2 (SD= 1479,
median = 3289 mm2, minimum=848 mm2, maximum=
17996 mm2 ). 1710 CRs were formed with the average
size 64 mm2. There were 182 CR labeled as CR1, 397 la-
beled as CR2, and 1131 labeled as CR12. We display two
ROI sets for one FLAIR MRI slice of a patient with MS
in Figure 2, to demonstrate raters’ disagreements.
Figure 2 The ROI sets from two raters are shown for a FLAIR
MRI slice of a patient with MS. The blue ROIs are from one rater
and the red ROIs are from the other. The ROIs in green designate
where the two raters drew the exact same ROIs. Clockwise, starting
from the upper left most lesion, the sizes of the lesions were: 106.7,
131.8; 58.0, 58.0; 32.1, 32.1; 27.7, 27.7; 174.7, 224.0; 507.9, 574.6; 10.6,0;
and 28.9, 0 mm2 for the Red and Blue raters‘ ROIs, respectively; the
green ROIs were included as both Red and Blue ROIs, and 0 is used
when the rater didn’t draw an ROI at that location. Although DE and
OER are calculated for an entire volume, for demonstration, we find
DE for this slice is 39.5 mm2 and OER for this slice is .142.
MTA versus DE and OE values are plotted in Figure 3.
While DE is relatively constant for all MTA values, OE
increases with MTA. The value of OE and DE is about
even for low MTA values; however, OE accounts for
roughly five times more of the total error than DE for
high MTA scans.
The Spearman rank correlations between MTA and SI

(ρ= .75, p< .001) and MTA and OE (ρ= .98,p< .001)
were significant. The rank correlations between MTA
and DE (ρ= .056, p = .83), and MTA and OER (ρ= .23,
p = .37) were not. Rank correlation was chosen over lin-
ear correlation for these measures because the relation-
ship between MTA and SI is explicitly assumed to be
non-linear. The mean values of DE and OER were
746.8 mm2, and .4077, respectively, and were used to ex-
press SI as a function of MTA:

SIestimateðR1;R2Þ ¼ 1� 1
2

� �
:4077� 1

2

� �
746:8
MTA

The calculated SI values (shown as dots) are plotted
against MTA, along with the graph of SIestimate, in
Figure 4. There was a significant (linear) correlation be-
tween SI and SIestimate (r = .83, p< .001), whereas there
was no correlation between the residual error and MTA
(r =−.02, p = .93). An examination of the residual error
did not exhibit a noticeable bias, except that the magni-
tude of error was clearly reduced with increased MTA.
This effect indicates that there is a greater variability in
rater performance for images depicting low lesion burden
than high lesion burden, which is also evident from
Figure 4.
Our expression for SI in terms of OER and DE pro-

vided a better fit of the measured SI values across vary-
ing lesion loads, both in an absolute and relative sense
(i.e., accounting for the number of parameters used),
than using the mean of the SI or a linear or quadratic fit
of SI values. The sum of the square of the residual errors
when fitting the measured SI values by MTA is: .383,
.254, .194, and .117; for the models: mean SI value, linear
fit, quadratic fit, and our DOEE method, respectively.
Furthermore, the respective Akaike Information Criter-
ion values [18] with correction for finite sample size
(AICc) are: -62.19, -66.6, -68.19, and −79.78, respect-
ively. AICc values are relative to each other and account
for a varying number of parameters in competing mod-
els. The lowest AICc value indicates the model that is
most likely the best model from an information theoretic
perspective. Hence, the parameters OER and DE provide
the best fit of SI’s dependence on lesion load, even
accounting for a differing number of parameters for each
model. The AICc values also allow us to calculate the
likelihood one model is better than another. The
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likelihood that a mean, linear, or quadratic fit is better
than our DOEE method is p<< .0001.
Figure 5 is the Cumulative Detection Error Graph cal-

culated on the set of 579 ROIs labeled as either CR1 or
CR2. The average number of ROIs (per scan) missed by
one rater and found by the other rater is graphed as a
function of ROI threshold size, as well as the graph of
the total number of missed ROIs (i.e., the sum of the
two separate rater curves). The initial steep decline seen
with all the curves is an indication that inter-operator
agreement improves quite rapidly with increased ROI
size, and then begins to level out, with a high rate of
agreement (low number of errors) for larger ROIs. For
example, the raters made approximately 5 detection
errors (marked by only one rater) per scan for ROIs
above 40 mm2, whereas the number of errors (mis-
matched ROIs) above 20 mm2 is much higher at ap-
proximately 20. We also observed that rater 1 drew
many more lesions smaller than 40 mm2 than rater 2.
That is, there were a greater number of CR1 regions
than CR2.
We noted previously that there was not a significant

correlation between MTA and OER. Furthermore, when
broken down to individual ROI sizes, there was no cor-
relation between lesion size (measured as the union of
the two raters) and the intersection/union fraction of the
1131 regions of type CR12 (r = .008, p = .7883). This is an
indication that rater outline agreement (as a fraction) is
similar for lesions of all sizes.
The relatively symmetric distribution, shown in the

Outline Error Distribution graph in Figure 6, indicates
that the two raters do not have a significant bias in how
they outline a lesion. Furthermore, we are able to see
that the most frequent agreement is at 0 (i.e., perfect
agreement within the size of the bin), and declines in
frequency as the disagreement size increases.
Discussion
Our results confirm the observation of others that the
agreement level between operators marking hyperintense
MS lesions as measured by SI is dependent on the lesion
burden shown in the test scans. Using AICc, which
accounts for the number of parameters a model uses,
the DOEE method was significantly better than the
mean value, linear, or quadratic fit of the SI values (p<
<.0001, for all three comparisons). Using the mean DE
and OER values calculated across scans, our expression
for SI in terms of MTA, SIðR1;R2Þ ¼ 1� 1

2

� �
OER�

1
2

� �
DE
MTA, has a remarkable .83 linear correlation (p< .001)

with the SI values calculated for each pair of ROIs asso-
ciated with a scan. Likewise, the small residual errors
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indicate a very good fit (Figure 4). Just as importantly,
the values for DE and OER are not significantly corre-
lated with MTA. Hence, it is easy to see that if SI meas-
urement is used then operator agreement will appear
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Figure 5 Cumulative Detection Error plots the average number
of ROI disagreements greater than a given lesion size. Plotted
are the total number of disagreements between both raters, and
also individually, so that the sum of the individual disagreements
equals the total disagreements.
poorest when using low lesion load scans (i.e., MTA is
small, and DE/MTA is relatively large, in the equation
for SI directly above), and best when using high lesion
load scans (i.e. high MTA) and SI can be approximated
as 1 – (1/2) OER. To summarize, while SI is commonly
used to measure rater ability, it heavily reflects the lesion
burden of the test set used. However, we are able to ex-
plain SI's dependence on lesion burden using just two
parameters that are not dependent on lesion burden.
We therefore propose these values (meanDE and mean-
OER) either as an addition or alternative to the reporting
of mean SI values for assessing rater agreement.
The shape of the SI values plotted against MTA values

(Figure 4) follows an initial steep rise followed by a level-
ing of values for larger values of MTA. This general
shape can be observed in graphs relating SI and lesion
burden from other centers [13]. The rank correlation
between SI and MTA was highly significant (ρ = .75,
p< .001). As values for SI are highly correlated with
Kappa and JI, these later indices would also be highly
dependent on the lesion burden of patients used in the test
set.
Our approach divides operator differences into two

types: DE and OE. These two types of errors have



Figure 6 The Outline Error Distribution graph provides an easy way of checking for outlining biases between the two raters. Values of
0 represent identical ROIs. Negative values indicate where rater 1 drew larger ROIs; positive values give the portion of ROIs that rater 2 drew
larger.
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different characteristics. DE was predominantly constant
for all scans, and had a non-significant (ρ= .056, p = .83)
rank correlation with MTA. On the other hand, OE
showed a strong linear relationship with MTA (Figure 3).
This led to our use of OER in our equation for SI, which
has a low rank correlation with MTA (ρ= .23, p = .37).
OE's direct dependence on MTA is reasonable. MTA
increases when there are more lesions, or the average le-
sion size increases. In either condition, we expect the
outline error to increase. It may seem reasonable to as-
sume a similar relationship with DE. That is, that more
lesions imply operators would have a larger absolute
number of differences in detecting lesions. However, this
is not the case. The predominant relationship is that DE
is relatively constant across scans and MTA values
(Figure 3) and is well represented by a line with an
intercept equal to DE and a slope equal to zero. This
relationship suggests operators may have an advantage
in agreeing to mark a small lesion (lower rate of detec-
tion error) on a scan depicting high lesion burden than
a low lesion burden. That is, even though raters must
mark more lesions on scans depicting high lesion vol-
ume, they will likely have the same total difference in the
detection of lesions (DE) as from a scan depicting low
lesion burden. We believe that DE remaining relatively
constant across a range of lesion loads indicates that
total size of “subtle” or ambiguous lesions remains rela-
tively constant across scans. Outline error, on the other
hand, can be well represented by a line with an inter-
cept equal to zero, and slope equal to OER (Figure 3).
Detection error measurements, the total size (DE) and
number of missed ROIs (Cumulative Detection Error
graph), are especially important in the analysis of longi-
tudinal studies. For example, a result of many ROI ana-
lyses is to establish the number of (typically small)
lesions that may have newly appeared or disappeared
with respect to a previous scan. In this regard, agree-
ment measures such as SI, JI, or Kappa—or worse, oper-
ator agreement in measuring total lesion volume—are
poorly suited to the task. This is especially true if the
scans have a high lesion burden, since these measures
are fully dominated by the raters' agreement on the out-
lines of large lesions. If the analysis requires the deter-
mination of small lesions, we recommend the use of the
Cumulative Detection Error graph to estimate the
expected number of detection errors above a given
threshold size. We then recommend that a lesion thresh-
old value be chosen for the analysis so the average num-
ber of disagreements is small.
OE is the major contributor of error by volume. While

for low lesion burden the contributions of OE and DE
were similar, OE was more than 5 times larger than DE
for scans showing high lesion burden. As such, reducing
OE (or OER) should have the greater impact on improv-
ing inter-rater measure of lesion volume. It is, therefore,
not surprising that outlining of lesions using semi-
automated contouring methods has been shown to re-
duce inter-rater variability compared to manual outlining
[6]. The test for correlation between individual CR union
and intersection/union was performed for 1131 CR and
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near zero correlation (r = .008, p = .7883) was observed.
This indicates the outline agreement behaves similarly for
ROIs of all sizes. The presented Outline Error Distribution
graph makes use of this fact and uses ROIs of all sizes for
the distribution. Even with the above findings, it is still pos-
sible that lesions with similar size will have slightly different
values for the intersection/union fraction depending on the
overall lesion load of the scan the lesion was from.
Breaking operator agreement into DE and OER allows

an operator to be evaluated on either or both criteria
according to the demands of the application. Our tests
and observations provide an introduction to our devel-
oped tools for the comparison of raters creating ROIs of
MS lesions. The development was driven from testing
automated lesion detection methods. In this work, it
quickly became apparent that the success of a method as
measured by SI had little to do with the method, but in-
stead was extensively driven by the lesion burden
revealed by the images. Automated lesion detection
methods are regularly reported in the literature, with
their performance typically described in terms of JI, SI,
or Kappa. Based on the results presented here, we see
that it is difficult for the reader to compare results of dif-
ferent methods, since the lesion burden of the patients
used to construct a test set of scans dominates how well
a method performs in terms of SI. Had methods similar
to ours been used, it would be relatively easy to assess
the strengths and weaknesses of the different methods.
OE, DE, and SI only measure the difference between

the raters, and don't distinguish between raters or a
gold standard with "False Positive" and "False Negative"
distinctions [19]. However, our "Cumulative Detection
Error" and "Outline Error Distribution" graphs provide
an informative approach—which examines whether
biases exist between raters—that is consistent with our
division between detection and outline differences. The
initial observations made here lead to many new ques-
tions and research areas. For instance, would the in-
corporation of lesion contrast either with or in place of
lesion size provide a better variable for the functions
measuring detection and outline agreement? Addition-
ally, our approach demonstrated usefulness for compar-
ing rater agreement across scanning modalities, which
allows us to answer questions such as: “Do raters agree
better when measuring ROIs on a 3 T scanner versus a
1.5 T scanner?” Used in this way our method would be
able to determine whether a hypothesized improvement
is due to improved detection or outline agreement.
While we propose DE and OER as better measures

for the comparison of raters' masks than using SI, JI,
or Kappa, these still do not strictly measure rater per-
formance alone. In the case of comparing 1.5 T vs. 3 T
scanning modalities, this can be used as an advantage.
In general, we (obviously) anticipate that raters will
perform better on high quality images than on low
quality images. However, our methods remove a signifi-
cant confounding problem in the comparison of raters
that afflicts the indices, SI, JI and Kappa. Our testing
used ROI sets from two raters on 17 scans, which is
more than would typically be used to evaluate a rater,
and was sufficient to demonstrate the very strong cor-
relation (r = .83, p< .001) between our estimate and
true SI values. The full utility of our measures, as with
SI or others, will have to be established over time, as
they are used on a wider variety of applications.

Conclusion
Like others, we have shown that SI is dependent on the
lesion burden of the patients used in the test sets. How-
ever, we have provided an equation for SI's relationship
to MTA, based on the calculation of the mean detection
and outline errors, which did not have a significant cor-
relation with MTA. We recommend the adoption of de-
tection and outline error methods for the assessment of
rater ROIs. Additionally, we've shown that Cumulative
Detection Error and Outline Error Distribution graphs
provide a center with information on where to focus
efforts to improve inter-operator agreement. Based on
these advantages, we argue for the use of our measure-
ments for inter-rater agreement assessments of lesion
ROIs drawn on FLAIR MRI to improve the quality of
ROIs created at a center. The result is an increase in the
trust of the subsequent analysis for both studies that rely
on measures of total LV, and studies which are focused
on individual lesion changes over time.
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